TideTerm.java
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.data;
import org.hipparchus.RealFieldElement;
/** Class for tide terms.
* <p>
* BEWARE! For consistency with all the other Poisson series terms,
* the elements in γ, l, l', F, D and Ω are ADDED together to compute
* the argument of the term. In classical tides series, the computed
* argument is cGamma * γ - (cL * l + cLPrime * l' + cF * F + cD * D
* + cOmega * Ω). So at parsing time, the signs of cL, cLPrime, cF,
* cD and cOmega must already have been reversed so the addition
* performed here will work. This is done automatically when the
* parser has been configured with a call to {@link
* PoissonSeriesParser#withDoodson(int, int)} as the relationship
* between the Doodson arguments and the traditional Delaunay
* arguments ensures the proper sign is known.
* </p>
* @param <T> the type of the field elements
* @author Luc Maisonobe
*/
class TideTerm extends SeriesTerm {
/** Coefficient for γ = GMST + π tide parameter. */
private final int cGamma;
/** Coefficient for mean anomaly of the Moon. */
private final int cL;
/** Coefficient for mean anomaly of the Sun. */
private final int cLPrime;
/** Coefficient for L - Ω where L is the mean longitude of the Moon. */
private final int cF;
/** Coefficient for mean elongation of the Moon from the Sun. */
private final int cD;
/** Coefficient for mean longitude of the ascending node of the Moon. */
private final int cOmega;
/** Build a tide term for nutation series.
* @param cGamma coefficient for γ = GMST + π tide parameter
* @param cL coefficient for mean anomaly of the Moon
* @param cLPrime coefficient for mean anomaly of the Sun
* @param cF coefficient for L - Ω where L is the mean longitude of the Moon
* @param cD coefficient for mean elongation of the Moon from the Sun
* @param cOmega coefficient for mean longitude of the ascending node of the Moon
*/
TideTerm(final int cGamma,
final int cL, final int cLPrime, final int cF, final int cD, final int cOmega) {
this.cGamma = cGamma;
this.cL = cL;
this.cLPrime = cLPrime;
this.cF = cF;
this.cD = cD;
this.cOmega = cOmega;
}
/** {@inheritDoc} */
protected double argument(final BodiesElements elements) {
return cGamma * elements.getGamma() +
cL * elements.getL() + cLPrime * elements.getLPrime() + cF * elements.getF() +
cD * elements.getD() + cOmega * elements.getOmega();
}
/** {@inheritDoc} */
protected double argumentDerivative(final BodiesElements elements) {
return cGamma * elements.getGammaDot() +
cL * elements.getLDot() + cLPrime * elements.getLPrimeDot() + cF * elements.getFDot() +
cD * elements.getDDot() + cOmega * elements.getOmegaDot();
}
/** {@inheritDoc} */
protected <T extends RealFieldElement<T>> T argument(final FieldBodiesElements<T> elements) {
return elements.getGamma().multiply(cGamma).
add(elements.getL().multiply(cL)).
add(elements.getLPrime().multiply(cLPrime)).
add(elements.getF().multiply(cF)).
add(elements.getD().multiply(cD)).
add(elements.getOmega().multiply(cOmega));
}
/** {@inheritDoc} */
protected <T extends RealFieldElement<T>> T argumentDerivative(final FieldBodiesElements<T> elements) {
return elements.getGammaDot().multiply(cGamma).
add(elements.getLDot().multiply(cL)).
add(elements.getLPrimeDot().multiply(cLPrime)).
add(elements.getFDot().multiply(cF)).
add(elements.getDDot().multiply(cD)).
add(elements.getOmegaDot().multiply(cOmega));
}
}