NiellMappingFunctionModel.java
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.models.earth;
import java.util.Collections;
import java.util.List;
import org.hipparchus.Field;
import org.hipparchus.RealFieldElement;
import org.hipparchus.analysis.UnivariateFunction;
import org.hipparchus.analysis.interpolation.LinearInterpolator;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.DateTimeComponents;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.time.TimeScalesFactory;
import org.orekit.utils.ParameterDriver;
/** The Niell Mapping Function model for radio wavelengths.
* This model is an empirical mapping function. It only needs the
* values of the station latitude, height and the date for the computations.
* <p>
* With this model, the hydrostatic mapping function is time and latitude dependent
* whereas the wet mapping function is only latitude dependent.
* </p>
*
* @see A. E. Niell(1996), "Global mapping functions for the atmosphere delay of radio wavelengths,”
* J. Geophys. Res., 101(B2), pp. 3227–3246, doi: 10.1029/95JB03048.
*
* @author Bryan Cazabonne
*
*/
public class NiellMappingFunctionModel implements MappingFunction {
/** Serializable UID. */
private static final long serialVersionUID = 7990311232335034375L;
/** Values for the ah average function. */
private static final double[] VALUES_FOR_AH_AVERAGE = {
1.2769934e-3, 1.2683230e-3, 1.2465397e-3, 1.2196049e-3, 1.2045996e-3
};
/** Values for the bh average function. */
private static final double[] VALUES_FOR_BH_AVERAGE = {
2.9153695e-3, 2.9152299e-3, 2.9288445e-3, 2.9022565e-3, 2.9024912e-3
};
/** Values for the ch average function. */
private static final double[] VALUES_FOR_CH_AVERAGE = {
62.610505e-3, 62.837393e-3, 63.721774e-3, 63.824265e-3, 64.258455e-3
};
/** Values for the ah amplitude function. */
private static final double[] VALUES_FOR_AH_AMPLITUDE = {
0.0, 1.2709626e-5, 2.6523662e-5, 3.4000452e-5, 4.1202191e-5
};
/** Values for the bh amplitude function. */
private static final double[] VALUES_FOR_BH_AMPLITUDE = {
0.0, 2.1414979e-5, 3.0160779e-5, 7.2562722e-5, 11.723375e-5
};
/** X values for the ch amplitude function. */
private static final double[] VALUES_FOR_CH_AMPLITUDE = {
0.0, 9.0128400e-5, 4.3497037e-5, 84.795348e-5, 170.37206e-5
};
/** Values for the aw function. */
private static final double[] VALUES_FOR_AW = {
5.8021897e-4, 5.6794847e-4, 5.8118019e-4, 5.9727542e-4, 6.1641693e-4
};
/** Values for the bw function. */
private static final double[] VALUES_FOR_BW = {
1.4275268e-3, 1.5138625e-3, 1.4572752e-3, 1.5007428e-3, 1.7599082e-3
};
/** Values for the cw function. */
private static final double[] VALUES_FOR_CW = {
4.3472961e-2, 4.6729510e-2, 4.3908931e-2, 4.4626982e-2, 5.4736038e-2
};
/** Values for the cw function. */
private static final double[] LATITUDE_VALUES = {
FastMath.toRadians(15.0), FastMath.toRadians(30.0), FastMath.toRadians(45.0), FastMath.toRadians(60.0), FastMath.toRadians(75.0),
};
/** Interpolation function for the ah (average) term. */
private final transient UnivariateFunction ahAverageFunction;
/** Interpolation function for the bh (average) term. */
private final transient UnivariateFunction bhAverageFunction;
/** Interpolation function for the ch (average) term. */
private final transient UnivariateFunction chAverageFunction;
/** Interpolation function for the ah (amplitude) term. */
private final transient UnivariateFunction ahAmplitudeFunction;
/** Interpolation function for the bh (amplitude) term. */
private final transient UnivariateFunction bhAmplitudeFunction;
/** Interpolation function for the ch (amplitude) term. */
private final transient UnivariateFunction chAmplitudeFunction;
/** Interpolation function for the aw term. */
private final transient UnivariateFunction awFunction;
/** Interpolation function for the bw term. */
private final transient UnivariateFunction bwFunction;
/** Interpolation function for the cw term. */
private final transient UnivariateFunction cwFunction;
/** Geodetic site latitude, radians.*/
private final double latitude;
/** Buils a new instance.
* @param latitude geodetic latitude of the station, in radians
*/
public NiellMappingFunctionModel(final double latitude) {
// Interpolation functions for hydrostatic coefficients
this.ahAverageFunction = new LinearInterpolator().interpolate(LATITUDE_VALUES, VALUES_FOR_AH_AVERAGE);
this.bhAverageFunction = new LinearInterpolator().interpolate(LATITUDE_VALUES, VALUES_FOR_BH_AVERAGE);
this.chAverageFunction = new LinearInterpolator().interpolate(LATITUDE_VALUES, VALUES_FOR_CH_AVERAGE);
this.ahAmplitudeFunction = new LinearInterpolator().interpolate(LATITUDE_VALUES, VALUES_FOR_AH_AMPLITUDE);
this.bhAmplitudeFunction = new LinearInterpolator().interpolate(LATITUDE_VALUES, VALUES_FOR_BH_AMPLITUDE);
this.chAmplitudeFunction = new LinearInterpolator().interpolate(LATITUDE_VALUES, VALUES_FOR_CH_AMPLITUDE);
// Interpolation functions for wet coefficients
this.awFunction = new LinearInterpolator().interpolate(LATITUDE_VALUES, VALUES_FOR_AW);
this.bwFunction = new LinearInterpolator().interpolate(LATITUDE_VALUES, VALUES_FOR_BW);
this.cwFunction = new LinearInterpolator().interpolate(LATITUDE_VALUES, VALUES_FOR_CW);
this.latitude = latitude;
}
@Override
public double[] mappingFactors(final double elevation, final double height,
final double[] parameters, final AbsoluteDate date) {
// Day of year computation
final DateTimeComponents dtc = date.getComponents(TimeScalesFactory.getUTC());
final int dofyear = dtc.getDate().getDayOfYear();
// Temporal factor
double t0 = 28;
if (latitude < 0) {
// southern hemisphere: t0 = 28 + an integer half of year
t0 += 183;
}
final double coef = 2 * FastMath.PI * ((dofyear - t0) / 365.25);
final double cosCoef = FastMath.cos(coef);
// Compute ah, bh and ch Eq. 5
double absLatidude = FastMath.abs(latitude);
// there are no data in the model for latitudes lower than 15°
absLatidude = FastMath.max(FastMath.toRadians(15.0), absLatidude);
// there are no data in the model for latitudes greater than 75°
absLatidude = FastMath.min(FastMath.toRadians(75.0), absLatidude);
final double ah = ahAverageFunction.value(absLatidude) - ahAmplitudeFunction.value(absLatidude) * cosCoef;
final double bh = bhAverageFunction.value(absLatidude) - bhAmplitudeFunction.value(absLatidude) * cosCoef;
final double ch = chAverageFunction.value(absLatidude) - chAmplitudeFunction.value(absLatidude) * cosCoef;
final double[] function = new double[2];
// Hydrostatic mapping factor
function[0] = computeFunction(ah, bh, ch, elevation);
// Wet mapping factor
function[1] = computeFunction(awFunction.value(absLatidude), bwFunction.value(absLatidude), cwFunction.value(absLatidude), elevation);
// Apply height correction
final double correction = computeHeightCorrection(elevation, height);
function[0] = function[0] + correction;
return function;
}
@Override
public <T extends RealFieldElement<T>> T[] mappingFactors(final T elevation, final T height,
final T[] parameters, final FieldAbsoluteDate<T> date) {
final Field<T> field = height.getField();
final T zero = field.getZero();
// Day of year computation
final DateTimeComponents dtc = date.getComponents(TimeScalesFactory.getUTC());
final int dofyear = dtc.getDate().getDayOfYear();
// Temporal factor
double t0 = 28;
if (latitude < 0) {
// southern hemisphere: t0 = 28 + an integer half of year
t0 += 183;
}
final T coef = zero.add(2 * FastMath.PI * ((dofyear - t0) / 365.25));
final T cosCoef = FastMath.cos(coef);
// Compute ah, bh and ch Eq. 5
double absLatidude = FastMath.abs(latitude);
// there are no data in the model for latitudes lower than 15°
absLatidude = FastMath.max(FastMath.toRadians(15.0), absLatidude);
// there are no data in the model for latitudes greater than 75°
absLatidude = FastMath.min(FastMath.toRadians(75.0), absLatidude);
final T ah = cosCoef.multiply(ahAmplitudeFunction.value(absLatidude)).negate().add(ahAverageFunction.value(absLatidude));
final T bh = cosCoef.multiply(bhAmplitudeFunction.value(absLatidude)).negate().add(bhAverageFunction.value(absLatidude));
final T ch = cosCoef.multiply(chAmplitudeFunction.value(absLatidude)).negate().add(chAverageFunction.value(absLatidude));
final T[] function = MathArrays.buildArray(field, 2);
// Hydrostatic mapping factor
function[0] = computeFunction(ah, bh, ch, elevation);
// Wet mapping factor
function[1] = computeFunction(zero.add(awFunction.value(absLatidude)), zero.add(bwFunction.value(absLatidude)),
zero.add(cwFunction.value(absLatidude)), elevation);
// Apply height correction
final T correction = computeHeightCorrection(elevation, height, field);
function[0] = function[0].add(correction);
return function;
}
@Override
public List<ParameterDriver> getParametersDrivers() {
return Collections.emptyList();
}
/** Compute the mapping function related to the coefficient values and the elevation.
* @param a a coefficient
* @param b b coefficient
* @param c c coefficient
* @param elevation the elevation of the satellite, in radians.
* @return the value of the function at a given elevation
*/
private double computeFunction(final double a, final double b, final double c, final double elevation) {
final double sinE = FastMath.sin(elevation);
// Numerator
final double numMP = 1 + a / (1 + b / (1 + c));
// Denominator
final double denMP = sinE + a / (sinE + b / (sinE + c));
final double felevation = numMP / denMP;
return felevation;
}
/** Compute the mapping function related to the coefficient values and the elevation.
* @param <T> type of the elements
* @param a a coefficient
* @param b b coefficient
* @param c c coefficient
* @param elevation the elevation of the satellite, in radians.
* @return the value of the function at a given elevation
*/
private <T extends RealFieldElement<T>> T computeFunction(final T a, final T b, final T c, final T elevation) {
final T sinE = FastMath.sin(elevation);
// Numerator
final T numMP = a.divide(b.divide(c.add(1.0)).add(1.0)).add(1.0);
// Denominator
final T denMP = a.divide(b.divide(c.add(sinE)).add(sinE)).add(sinE);
final T felevation = numMP.divide(denMP);
return felevation;
}
/** This method computes the height correction for the hydrostatic
* component of the mapping function (Neill, 1996).
* @param elevation the elevation of the satellite, in radians.
* @param height the height of the station in m above sea level.
* @return the height correction, in m
*/
private double computeHeightCorrection(final double elevation, final double height) {
final double fixedHeight = FastMath.max(0.0, height);
final double sinE = FastMath.sin(elevation);
// Ref: Eq. 4
final double function = computeFunction(2.53e-5, 5.49e-3, 1.14e-3, elevation);
// Ref: Eq. 6
final double dmdh = (1 / sinE) - function;
// Ref: Eq. 7
final double correction = dmdh * (fixedHeight / 1000.0);
return correction;
}
/** This method computes the height correction for the hydrostatic
* component of the mapping function (Neill, 1996).
* @param <T> type of the elements
* @param elevation the elevation of the satellite, in radians.
* @param height the height of the station in m above sea level.
* @param field field to which the elements belong
* @return the height correction, in m
*/
private <T extends RealFieldElement<T>> T computeHeightCorrection(final T elevation, final T height, final Field<T> field) {
final T zero = field.getZero();
final T fixedHeight = FastMath.max(zero, height);
final T sinE = FastMath.sin(elevation);
// Ref: Eq. 4
final T function = computeFunction(zero.add(2.53e-5), zero.add(5.49e-3), zero.add(1.14e-3), elevation);
// Ref: Eq. 6
final T dmdh = sinE.reciprocal().subtract(function);
// Ref: Eq. 7
final T correction = dmdh.multiply(fixedHeight.divide(1000.0));
return correction;
}
}