Propagator.java
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation;
import java.util.Collection;
import java.util.List;
import org.orekit.attitudes.AttitudeProvider;
import org.orekit.attitudes.InertialProvider;
import org.orekit.frames.Frame;
import org.orekit.propagation.events.EventDetector;
import org.orekit.propagation.sampling.OrekitFixedStepHandler;
import org.orekit.propagation.sampling.OrekitStepHandler;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.PVCoordinatesProvider;
/** This interface provides a way to propagate an orbit at any time.
*
* <p>This interface is the top-level abstraction for orbit propagation.
* It only allows propagation to a predefined date.
* It is implemented by analytical models which have no time limit,
* by orbit readers based on external data files, by numerical integrators
* using rich force models and by continuous models built after numerical
* integration has been completed and dense output data as been
* gathered.</p>
* <p>Note that one single propagator cannot be called from multiple threads.
* Its configuration can be changed as there is at least a {@link
* #resetInitialState(SpacecraftState)} method, and even propagators that do
* not support resetting state (like the {@link
* org.orekit.propagation.analytical.tle.TLEPropagator TLEPropagator} do
* cache some internal data during computation. However, as long as they
* are configured with independent building blocks (mainly event handlers
* and step handlers that may preserve some internal state), and as long
* as they are called from one thread only, they <em>can</em> be used in
* multi-threaded applications. Synchronizing several propagators to run in
* parallel is also possible using {@link PropagatorsParallelizer}.</p>
* @author Luc Maisonobe
* @author Véronique Pommier-Maurussane
*
*/
public interface Propagator extends PVCoordinatesProvider {
/** Default mass. */
double DEFAULT_MASS = 1000.0;
/** Default attitude provider. */
AttitudeProvider DEFAULT_LAW = InertialProvider.EME2000_ALIGNED;
/** Indicator for slave mode. */
int SLAVE_MODE = 0;
/** Indicator for master mode. */
int MASTER_MODE = 1;
/** Indicator for ephemeris generation mode. */
int EPHEMERIS_GENERATION_MODE = 2;
/** Get the current operating mode of the propagator.
* @return one of {@link #SLAVE_MODE}, {@link #MASTER_MODE},
* {@link #EPHEMERIS_GENERATION_MODE}
* @see #setSlaveMode()
* @see #setMasterMode(double, OrekitFixedStepHandler)
* @see #setMasterMode(OrekitStepHandler)
* @see #setEphemerisMode()
*/
int getMode();
/** Set the propagator to slave mode.
* <p>This mode is used when the user needs only the final orbit at the target time.
* The (slave) propagator computes this result and return it to the calling
* (master) application, without any intermediate feedback.
* <p>This is the default mode.</p>
* @see #setMasterMode(double, OrekitFixedStepHandler)
* @see #setMasterMode(OrekitStepHandler)
* @see #setEphemerisMode()
* @see #getMode()
* @see #SLAVE_MODE
*/
void setSlaveMode();
/** Set the propagator to master mode with fixed steps.
* <p>This mode is used when the user needs to have some custom function called at the
* end of each finalized step during integration. The (master) propagator integration
* loop calls the (slave) application callback methods at each finalized step.</p>
* @param h fixed stepsize (s)
* @param handler handler called at the end of each finalized step
* @see #setSlaveMode()
* @see #setMasterMode(OrekitStepHandler)
* @see #setEphemerisMode()
* @see #getMode()
* @see #MASTER_MODE
*/
void setMasterMode(double h, OrekitFixedStepHandler handler);
/** Set the propagator to master mode with variable steps.
* <p>This mode is used when the user needs to have some custom function called at the
* end of each finalized step during integration. The (master) propagator integration
* loop calls the (slave) application callback methods at each finalized step.</p>
* @param handler handler called at the end of each finalized step
* @see #setSlaveMode()
* @see #setMasterMode(double, OrekitFixedStepHandler)
* @see #setEphemerisMode()
* @see #getMode()
* @see #MASTER_MODE
*/
void setMasterMode(OrekitStepHandler handler);
/** Set the propagator to ephemeris generation mode.
* <p>This mode is used when the user needs random access to the orbit state at any time
* between the initial and target times, and in no sequential order. A typical example is
* the implementation of search and iterative algorithms that may navigate forward and
* backward inside the propagation range before finding their result.</p>
* <p>Beware that since this mode stores <strong>all</strong> intermediate results,
* it may be memory intensive for long integration ranges and high precision/short
* time steps.</p>
* @see #getGeneratedEphemeris()
* @see #setSlaveMode()
* @see #setMasterMode(double, OrekitFixedStepHandler)
* @see #setMasterMode(OrekitStepHandler)
* @see #getMode()
* @see #EPHEMERIS_GENERATION_MODE
*/
void setEphemerisMode();
/**
* Set the propagator to ephemeris generation mode with the specified handler for each
* integration step.
*
* <p>This mode is used when the user needs random access to the orbit state at any
* time between the initial and target times, as well as access to the steps computed
* by the integrator as in Master Mode. A typical example is the implementation of
* search and iterative algorithms that may navigate forward and backward inside the
* propagation range before finding their result.</p>
*
* <p>Beware that since this mode stores <strong>all</strong> intermediate results, it
* may be memory intensive for long integration ranges and high precision/short time
* steps.</p>
*
* @param handler handler called at the end of each finalized step
* @see #setEphemerisMode()
* @see #getGeneratedEphemeris()
* @see #setSlaveMode()
* @see #setMasterMode(double, OrekitFixedStepHandler)
* @see #setMasterMode(OrekitStepHandler)
* @see #getMode()
* @see #EPHEMERIS_GENERATION_MODE
*/
void setEphemerisMode(OrekitStepHandler handler);
/** Get the ephemeris generated during propagation.
* @return generated ephemeris
* @exception IllegalStateException if the propagator was not set in ephemeris
* generation mode before propagation
* @see #setEphemerisMode()
*/
BoundedPropagator getGeneratedEphemeris() throws IllegalStateException;
/** Get the propagator initial state.
* @return initial state
*/
SpacecraftState getInitialState();
/** Reset the propagator initial state.
* @param state new initial state to consider
*/
void resetInitialState(SpacecraftState state);
/** Add a set of user-specified state parameters to be computed along with the orbit propagation.
* @param additionalStateProvider provider for additional state
*/
void addAdditionalStateProvider(AdditionalStateProvider additionalStateProvider);
/** Get an unmodifiable list of providers for additional state.
* @return providers for the additional states
*/
List<AdditionalStateProvider> getAdditionalStateProviders();
/** Check if an additional state is managed.
* <p>
* Managed states are states for which the propagators know how to compute
* its evolution. They correspond to additional states for which an
* {@link AdditionalStateProvider additional state provider} has been registered
* by calling the {@link #addAdditionalStateProvider(AdditionalStateProvider)
* addAdditionalStateProvider} method. If the propagator is an {@link
* org.orekit.propagation.integration.AbstractIntegratedPropagator integrator-based
* propagator}, the states for which a set of {@link
* org.orekit.propagation.integration.AdditionalEquations additional equations} has
* been registered by calling the {@link
* org.orekit.propagation.integration.AbstractIntegratedPropagator#addAdditionalEquations(
* org.orekit.propagation.integration.AdditionalEquations) addAdditionalEquations}
* method are also counted as managed additional states.
* </p>
* <p>
* Additional states that are present in the {@link #getInitialState() initial state}
* but have no evolution method registered are <em>not</em> considered as managed states.
* These unmanaged additional states are not lost during propagation, though. Their
* value will simply be copied unchanged throughout propagation.
* </p>
* @param name name of the additional state
* @return true if the additional state is managed
*/
boolean isAdditionalStateManaged(String name);
/** Get all the names of all managed states.
* @return names of all managed states
*/
String[] getManagedAdditionalStates();
/** Add an event detector.
* @param detector event detector to add
* @see #clearEventsDetectors()
* @see #getEventsDetectors()
* @param <T> class type for the generic version
*/
<T extends EventDetector> void addEventDetector(T detector);
/** Get all the events detectors that have been added.
* @return an unmodifiable collection of the added detectors
* @see #addEventDetector(EventDetector)
* @see #clearEventsDetectors()
*/
Collection<EventDetector> getEventsDetectors();
/** Remove all events detectors.
* @see #addEventDetector(EventDetector)
* @see #getEventsDetectors()
*/
void clearEventsDetectors();
/** Get attitude provider.
* @return attitude provider
*/
AttitudeProvider getAttitudeProvider();
/** Set attitude provider.
* @param attitudeProvider attitude provider
*/
void setAttitudeProvider(AttitudeProvider attitudeProvider);
/** Get the frame in which the orbit is propagated.
* <p>
* The propagation frame is the definition frame of the initial
* state, so this method should be called after this state has
* been set, otherwise it may return null.
* </p>
* @return frame in which the orbit is propagated
* @see #resetInitialState(SpacecraftState)
*/
Frame getFrame();
/** Propagate towards a target date.
* <p>Simple propagators use only the target date as the specification for
* computing the propagated state. More feature rich propagators can consider
* other information and provide different operating modes or G-stop
* facilities to stop at pinpointed events occurrences. In these cases, the
* target date is only a hint, not a mandatory objective.</p>
* @param target target date towards which orbit state should be propagated
* @return propagated state
*/
SpacecraftState propagate(AbsoluteDate target);
/** Propagate from a start date towards a target date.
* <p>Those propagators use a start date and a target date to
* compute the propagated state. For propagators using event detection mechanism,
* if the provided start date is different from the initial state date, a first,
* simple propagation is performed, without processing any event computation.
* Then complete propagation is performed from start date to target date.</p>
* @param start start date from which orbit state should be propagated
* @param target target date to which orbit state should be propagated
* @return propagated state
*/
SpacecraftState propagate(AbsoluteDate start, AbsoluteDate target);
}