FieldBoundedCartesianEnergy.java
/* Copyright 2022-2024 Romain Serra
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.control.indirect.adjoint.cost;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.util.FastMath;
import org.orekit.propagation.events.EventDetectionSettings;
import org.orekit.propagation.events.FieldEventDetectionSettings;
import org.orekit.propagation.events.FieldEventDetector;
import java.util.stream.Stream;
/**
* Class for bounded energy cost with Cartesian coordinates.
* An energy cost is proportional to the integral over time of the squared Euclidean norm of the control vector, often scaled with 1/2.
* This type of cost is not optimal in terms of mass consumption, however its solutions showcase a smoother behavior favorable for convergence in shooting techniques.
* Here, the control vector is chosen as the thrust force divided by the maximum thrust magnitude and expressed in the propagation frame.
* It has a unit Euclidean norm.
*
* @param <T> field type
* @author Romain Serra
* @see FieldUnboundedCartesianEnergy
* @see BoundedCartesianEnergy
* @since 13.0
*/
public class FieldBoundedCartesianEnergy<T extends CalculusFieldElement<T>> extends FieldCartesianEnergyConsideringMass<T> {
/** Maximum value of thrust force Euclidean norm. */
private final T maximumThrustMagnitude;
/**
* Constructor.
* @param name name
* @param massFlowRateFactor mass flow rate factor
* @param maximumThrustMagnitude maximum thrust magnitude
* @param eventDetectionSettings singularity event detection settings
*/
public FieldBoundedCartesianEnergy(final String name, final T massFlowRateFactor,
final T maximumThrustMagnitude,
final FieldEventDetectionSettings<T> eventDetectionSettings) {
super(name, massFlowRateFactor, eventDetectionSettings);
this.maximumThrustMagnitude = FastMath.abs(maximumThrustMagnitude);
}
/**
* Constructor.
* @param name name
* @param massFlowRateFactor mass flow rate factor
* @param maximumThrustMagnitude maximum thrust magnitude
*/
public FieldBoundedCartesianEnergy(final String name, final T massFlowRateFactor,
final T maximumThrustMagnitude) {
this(name, massFlowRateFactor, maximumThrustMagnitude, new FieldEventDetectionSettings<>(massFlowRateFactor.getField(),
EventDetectionSettings.getDefaultEventDetectionSettings()));
}
/** Getter for maximum thrust magnitude.
* @return maximum thrust
*/
public T getMaximumThrustMagnitude() {
return maximumThrustMagnitude;
}
/** {@inheritDoc} */
@Override
protected T getFieldThrustForceNorm(final T[] adjointVariables, final T mass) {
final T adjointVelocityNorm = getFieldAdjointVelocityNorm(adjointVariables);
final T factor = adjointVelocityNorm.divide(mass).subtract(adjointVariables[6].multiply(getMassFlowRateFactor()));
final double factorReal = factor.getReal();
final T zero = mass.getField().getZero();
if (factorReal > maximumThrustMagnitude.getReal()) {
return maximumThrustMagnitude;
} else if (factorReal < 0.) {
return zero;
} else {
return factor;
}
}
/** {@inheritDoc} */
@Override
public Stream<FieldEventDetector<T>> getFieldEventDetectors(final Field<T> field) {
final T zero = field.getZero();
return Stream.of(new FieldSingularityDetector(zero), new FieldSingularityDetector(maximumThrustMagnitude));
}
/** {@inheritDoc} */
@Override
public BoundedCartesianEnergy toCartesianCost() {
return new BoundedCartesianEnergy(getAdjointName(), getMassFlowRateFactor().getReal(), maximumThrustMagnitude.getReal(),
getEventDetectionSettings().toEventDetectionSettings());
}
}