DeSitterRelativity.java
/* Contributed to the public domain
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.gravity;
import java.util.Collections;
import java.util.List;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.annotation.DefaultDataContext;
import org.orekit.bodies.CelestialBody;
import org.orekit.data.DataContext;
import org.orekit.forces.ForceModel;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.SpacecraftState;
import org.orekit.utils.Constants;
import org.orekit.utils.ExtendedPositionProvider;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.ParameterDriver;
/**
* De Sitter post-Newtonian correction force due to general relativity.
* <p>
* De Sitter term causes a precession of the orbital plane at a rate of 19 mas per year.
* </p>
* @see "Petit, G. and Luzum, B. (eds.), IERS Conventions (2010), Chapter 10,
* General relativistic models for space-time coordinates and equations of motion (2010)"
*
* @author Bryan Cazabonne
* @since 10.3
*/
public class DeSitterRelativity implements ForceModel {
/** Suffix for parameter name for attraction coefficient enabling Jacobian processing. */
public static final String ATTRACTION_COEFFICIENT_SUFFIX = " attraction coefficient";
/** Central attraction scaling factor.
* <p>
* We use a power of 2 to avoid numeric noise introduction
* in the multiplications/divisions sequences.
* </p>
*/
private static final double MU_SCALE = FastMath.scalb(1.0, 32);
/** The Sun. */
private final CelestialBody sun;
/** The Earth. */
private final ExtendedPositionProvider earth;
/** Driver for gravitational parameter. */
private final ParameterDriver gmParameterDriver;
/**
* Constructor.
* <p>It uses the {@link DataContext#getDefault()} to initialize the celestial bodies.</p>
*/
@DefaultDataContext
public DeSitterRelativity() {
this(DataContext.getDefault().getCelestialBodies().getEarth(),
DataContext.getDefault().getCelestialBodies().getSun());
}
/**
* Simple constructor.
* @param earth the Earth
* @param sun the Sun
*/
public DeSitterRelativity(final CelestialBody earth, final CelestialBody sun) {
gmParameterDriver = new ParameterDriver(sun.getName() + ATTRACTION_COEFFICIENT_SUFFIX,
sun.getGM(), MU_SCALE,
0.0, Double.POSITIVE_INFINITY);
this.earth = earth;
this.sun = sun;
}
/**
* Get the sun model used to compute De Sitter effect.
* @return the sun model
*/
public CelestialBody getSun() {
return sun;
}
/**
* Get the Earth model used to compute De Sitter effect.
* @return the earth model
*/
public ExtendedPositionProvider getEarth() {
return earth;
}
/** {@inheritDoc} */
@Override
public boolean dependsOnPositionOnly() {
return false;
}
/** {@inheritDoc} */
@Override
public Vector3D acceleration(final SpacecraftState s, final double[] parameters) {
// Useful constant
final double c2 = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT;
// Sun's gravitational parameter
final double gm = parameters[0];
// Satellite velocity with respect to the Earth
final PVCoordinates pvSat = s.getPVCoordinates();
final Vector3D vSat = pvSat.getVelocity();
// Coordinates of the Earth with respect to the Sun
final PVCoordinates pvEarth = earth.getPVCoordinates(s.getDate(), sun.getInertiallyOrientedFrame());
final Vector3D pEarth = pvEarth.getPosition();
final Vector3D vEarth = pvEarth.getVelocity();
// Radius
final double r = pEarth.getNorm();
final double r3 = r * r * r;
// Eq. 10.12
return new Vector3D((-3.0 * gm) / (c2 * r3), vEarth.crossProduct(pEarth).crossProduct(vSat));
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(final FieldSpacecraftState<T> s,
final T[] parameters) {
// Useful constant
final double c2 = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT;
// Sun's gravitational parameter
final T gm = parameters[0];
// Satellite velocity with respect to the Earth
final FieldPVCoordinates<T> pvSat = s.getPVCoordinates();
final FieldVector3D<T> vSat = pvSat.getVelocity();
// Coordinates of the Earth with respect to the Sun
final FieldPVCoordinates<T> pvEarth = earth.getPVCoordinates(s.getDate(), sun.getInertiallyOrientedFrame());
final FieldVector3D<T> pEarth = pvEarth.getPosition();
final FieldVector3D<T> vEarth = pvEarth .getVelocity();
// Radius
final T r = pEarth.getNorm();
final T r3 = r.multiply(r).multiply(r);
// Eq. 10.12
return new FieldVector3D<>(gm.multiply(-3.0).divide(r3.multiply(c2)), vEarth.crossProduct(pEarth).crossProduct(vSat));
}
/** {@inheritDoc} */
@Override
public List<ParameterDriver> getParametersDrivers() {
return Collections.singletonList(gmParameterDriver);
}
}