NumericalPropagatorBuilder.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.conversion;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import org.orekit.attitudes.Attitude;
import org.orekit.attitudes.AttitudeProvider;
import org.orekit.attitudes.FrameAlignedProvider;
import org.orekit.estimation.leastsquares.BatchLSModel;
import org.orekit.estimation.leastsquares.ModelObserver;
import org.orekit.estimation.measurements.ObservedMeasurement;
import org.orekit.forces.ForceModel;
import org.orekit.forces.gravity.NewtonianAttraction;
import org.orekit.forces.maneuvers.ImpulseManeuver;
import org.orekit.orbits.Orbit;
import org.orekit.orbits.PositionAngleType;
import org.orekit.propagation.PropagationType;
import org.orekit.propagation.Propagator;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.integration.AdditionalDerivativesProvider;
import org.orekit.propagation.numerical.NumericalPropagator;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.ParameterDriversList;
/** Builder for numerical propagator.
* @author Pascal Parraud
* @since 6.0
*/
public class NumericalPropagatorBuilder extends AbstractIntegratedPropagatorBuilder<NumericalPropagator> {
/** Force models used during the extrapolation of the orbit. */
private final List<ForceModel> forceModels;
/** Impulse maneuvers. */
private final List<ImpulseManeuver> impulseManeuvers;
/** Build a new instance.
* <p>
* The reference orbit is used as a model to {@link
* #createInitialOrbit() create initial orbit}. It defines the
* inertial frame, the central attraction coefficient, and is also used together
* with the {@code positionScale} to convert from the {@link
* ParameterDriver#setNormalizedValue(double) normalized} parameters used by the
* callers of this builder to the real orbital parameters.
* The default attitude provider is aligned with the orbit's inertial frame.
* </p>
*
* @param referenceOrbit reference orbit from which real orbits will be built
* @param builder first order integrator builder
* @param positionAngleType position angle type to use
* @param positionScale scaling factor used for orbital parameters normalization
* (typically set to the expected standard deviation of the position)
* @since 8.0
* @see #NumericalPropagatorBuilder(Orbit, ODEIntegratorBuilder, PositionAngleType,
* double, AttitudeProvider)
*/
public NumericalPropagatorBuilder(final Orbit referenceOrbit,
final ODEIntegratorBuilder builder,
final PositionAngleType positionAngleType,
final double positionScale) {
this(referenceOrbit, builder, positionAngleType, positionScale,
FrameAlignedProvider.of(referenceOrbit.getFrame()));
}
/** Build a new instance.
* <p>
* The reference orbit is used as a model to {@link
* #createInitialOrbit() create initial orbit}. It defines the
* inertial frame, the central attraction coefficient, and is also used together
* with the {@code positionScale} to convert from the {@link
* ParameterDriver#setNormalizedValue(double) normalized} parameters used by the
* callers of this builder to the real orbital parameters.
* </p>
* @param referenceOrbit reference orbit from which real orbits will be built
* @param builder first order integrator builder
* @param positionAngleType position angle type to use
* @param positionScale scaling factor used for orbital parameters normalization
* (typically set to the expected standard deviation of the position)
* @param attitudeProvider attitude law.
* @since 10.1
*/
public NumericalPropagatorBuilder(final Orbit referenceOrbit,
final ODEIntegratorBuilder builder,
final PositionAngleType positionAngleType,
final double positionScale,
final AttitudeProvider attitudeProvider) {
super(referenceOrbit, builder, positionAngleType, positionScale, PropagationType.OSCULATING, attitudeProvider, Propagator.DEFAULT_MASS);
this.forceModels = new ArrayList<>();
this.impulseManeuvers = new ArrayList<>();
}
/**
* Add impulse maneuver.
* @param impulseManeuver impulse maneuver
* @since 12.2
*/
public void addImpulseManeuver(final ImpulseManeuver impulseManeuver) {
impulseManeuvers.add(impulseManeuver);
}
/**
* Remove all impulse maneuvers.
* @since 12.2
*/
public void clearImpulseManeuvers() {
impulseManeuvers.clear();
}
/** Get the list of all force models.
* @return the list of all force models
* @since 9.2
*/
public List<ForceModel> getAllForceModels()
{
return Collections.unmodifiableList(forceModels);
}
/** Add a force model to the global perturbation model.
* <p>If this method is not called at all, the integrated orbit will follow
* a Keplerian evolution only.</p>
* @param model perturbing {@link ForceModel} to add
*/
public void addForceModel(final ForceModel model) {
if (model instanceof NewtonianAttraction) {
// we want to add the central attraction force model
if (hasNewtonianAttraction()) {
// there is already a central attraction model, replace it
forceModels.set(forceModels.size() - 1, model);
} else {
// there are no central attraction model yet, add it at the end of the list
forceModels.add(model);
}
} else {
// we want to add a perturbing force model
if (hasNewtonianAttraction()) {
// insert the new force model before Newtonian attraction,
// which should always be the last one in the list
forceModels.add(forceModels.size() - 1, model);
} else {
// we only have perturbing force models up to now, just append at the end of the list
forceModels.add(model);
}
}
addSupportedParameters(model.getParametersDrivers());
}
/** {@inheritDoc} */
public NumericalPropagator buildPropagator(final double[] normalizedParameters) {
setParameters(normalizedParameters);
final Orbit orbit = createInitialOrbit();
final Attitude attitude =
getAttitudeProvider().getAttitude(orbit, orbit.getDate(), getFrame());
final SpacecraftState state = new SpacecraftState(orbit, attitude, getMass());
final NumericalPropagator propagator = new NumericalPropagator(
getIntegratorBuilder().buildIntegrator(orbit, getOrbitType(), getPositionAngleType()),
getAttitudeProvider());
propagator.setOrbitType(getOrbitType());
propagator.setPositionAngleType(getPositionAngleType());
// Configure force models
if (!hasNewtonianAttraction()) {
// There are no central attraction model yet, add it at the end of the list
addForceModel(new NewtonianAttraction(orbit.getMu()));
}
for (ForceModel model : forceModels) {
propagator.addForceModel(model);
}
impulseManeuvers.forEach(propagator::addEventDetector);
propagator.resetInitialState(state);
// Add additional derivatives providers to the propagator
for (AdditionalDerivativesProvider provider: getAdditionalDerivativesProviders()) {
propagator.addAdditionalDerivativesProvider(provider);
}
return propagator;
}
/** {@inheritDoc} */
@Override
public BatchLSModel buildLeastSquaresModel(final PropagatorBuilder[] builders,
final List<ObservedMeasurement<?>> measurements,
final ParameterDriversList estimatedMeasurementsParameters,
final ModelObserver observer) {
return new BatchLSModel(builders, measurements, estimatedMeasurementsParameters, observer);
}
/** Check if Newtonian attraction force model is available.
* <p>
* Newtonian attraction is always the last force model in the list.
* </p>
* @return true if Newtonian attraction force model is available
*/
private boolean hasNewtonianAttraction() {
final int last = forceModels.size() - 1;
return last >= 0 && forceModels.get(last) instanceof NewtonianAttraction;
}
}