UnscentedKalmanModel.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.sequential;
import org.hipparchus.filtering.kalman.ProcessEstimate;
import org.hipparchus.filtering.kalman.unscented.UnscentedEvolution;
import org.hipparchus.filtering.kalman.unscented.UnscentedProcess;
import org.hipparchus.linear.ArrayRealVector;
import org.hipparchus.linear.MatrixUtils;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.linear.RealVector;
import org.orekit.estimation.measurements.EstimatedMeasurement;
import org.orekit.estimation.measurements.EstimatedMeasurementBase;
import org.orekit.estimation.measurements.ObservedMeasurement;
import org.orekit.propagation.Propagator;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.conversion.AbstractPropagatorBuilder;
import org.orekit.propagation.conversion.PropagatorBuilder;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.ParameterDriversList;
import org.orekit.utils.ParameterDriversList.DelegatingDriver;
import java.util.List;
/** Class defining the process model dynamics to use with a {@link UnscentedKalmanEstimator}.
* @author Gaƫtan Pierre
* @author Bryan Cazabonne
* @since 11.3
*/
public class UnscentedKalmanModel extends KalmanEstimationCommon implements UnscentedProcess<MeasurementDecorator> {
/** Reference values. */
private final double[] referenceValues;
/** Unscented Kalman process model constructor (package private).
* @param propagatorBuilders propagators builders used to evaluate the orbits.
* @param covarianceMatricesProviders provider for covariance matrix
* @param estimatedMeasurementParameters measurement parameters to estimate
* @param measurementProcessNoiseMatrix provider for measurement process noise matrix
*/
protected UnscentedKalmanModel(final List<PropagatorBuilder> propagatorBuilders,
final List<CovarianceMatrixProvider> covarianceMatricesProviders,
final ParameterDriversList estimatedMeasurementParameters,
final CovarianceMatrixProvider measurementProcessNoiseMatrix) {
super(propagatorBuilders, covarianceMatricesProviders, estimatedMeasurementParameters, measurementProcessNoiseMatrix);
// Record the initial reference values
int stateDimension = 0;
for (final ParameterDriver ignored : getEstimatedOrbitalParameters().getDrivers()) {
stateDimension += 1;
}
for (final ParameterDriver ignored : getEstimatedPropagationParameters().getDrivers()) {
stateDimension += 1;
}
for (final ParameterDriver ignored : getEstimatedMeasurementsParameters().getDrivers()) {
stateDimension += 1;
}
this.referenceValues = new double[stateDimension];
int index = 0;
for (final ParameterDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
referenceValues[index++] = driver.getReferenceValue();
}
for (final ParameterDriver driver : getEstimatedPropagationParameters().getDrivers()) {
referenceValues[index++] = driver.getReferenceValue();
}
for (final ParameterDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
referenceValues[index++] = driver.getReferenceValue();
}
}
/** {@inheritDoc} */
@Override
public UnscentedEvolution getEvolution(final double previousTime, final RealVector[] sigmaPoints,
final MeasurementDecorator measurement) {
// Set a reference date for all measurements parameters that lack one (including the not estimated ones)
final ObservedMeasurement<?> observedMeasurement = measurement.getObservedMeasurement();
for (final ParameterDriver driver : observedMeasurement.getParametersDrivers()) {
if (driver.getReferenceDate() == null) {
driver.setReferenceDate(getBuilders().get(0).getInitialOrbitDate());
}
}
// Increment measurement number
incrementCurrentMeasurementNumber();
// Update the current date
setCurrentDate(measurement.getObservedMeasurement().getDate());
// Initialize array of predicted sigma points
final RealVector[] predictedSigmaPoints = new RealVector[sigmaPoints.length];
// Propagate each sigma point
//
// We need to make a choice about what happens with the non-estimated parts of the orbital states.
// Here we've assumed that the zero'th sigma point is roughly the mean and keep those propagated
// orbital parameters. This is why we loop backward through the sigma-points and don't reset the
// propagator builders on the last iteration (corresponding to the zero-th sigma point).
//
// Note that -not- resetting the builders on the last iteration means that their time-stamps correspond
// to the prediction time. The assumption is that the unscented filter calls getEvolution, then
// getPredictedMeasurements, then getInnovation.
for (int i = sigmaPoints.length - 1; i >= 0; i--) {
// Set parameters for this sigma point
final RealVector sigmaPoint = sigmaPoints[i].copy();
updateParameters(sigmaPoint);
// Get propagators
final Propagator[] propagators = getEstimatedPropagators();
// Do prediction
predictedSigmaPoints[i] =
predictState(observedMeasurement.getDate(), sigmaPoint, propagators, i != 0);
}
// Reset the driver reference values based on the first sigma point
int d = 0;
for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
driver.setReferenceValue(referenceValues[d]);
driver.setNormalizedValue(predictedSigmaPoints[0].getEntry(d));
referenceValues[d] = driver.getValue();
// Make remaining sigma points relative to the first
for (int i = 1; i < predictedSigmaPoints.length; ++i) {
predictedSigmaPoints[i].setEntry(d, predictedSigmaPoints[i].getEntry(d) - predictedSigmaPoints[0].getEntry(d));
}
predictedSigmaPoints[0].setEntry(d, 0.0);
d += 1;
}
// compute process noise matrix
final RealMatrix normalizedProcessNoise = getNormalizedProcessNoise(sigmaPoints[0].getDimension());
// Return
return new UnscentedEvolution(measurement.getTime(), predictedSigmaPoints, normalizedProcessNoise);
}
/** {@inheritDoc} */
@Override
public RealVector[] getPredictedMeasurements(final RealVector[] predictedSigmaPoints, final MeasurementDecorator measurement) {
// Observed measurement
final ObservedMeasurement<?> observedMeasurement = measurement.getObservedMeasurement();
// Standard deviation as a vector
final RealVector theoreticalStandardDeviation =
MatrixUtils.createRealVector(observedMeasurement.getTheoreticalStandardDeviation());
// Initialize arrays of predicted states and measurements
final RealVector[] predictedMeasurements = new RealVector[predictedSigmaPoints.length];
// Loop on sigma points to predict measurements
for (int i = 0; i < predictedSigmaPoints.length; ++i) {
// Set parameters for this sigma point
final RealVector predictedSigmaPoint = predictedSigmaPoints[i].copy();
updateParameters(predictedSigmaPoint);
// Get propagators
final Propagator[] propagators = getEstimatedPropagators();
// Predicted states
final SpacecraftState[] predictedStates = new SpacecraftState[propagators.length];
for (int k = 0; k < propagators.length; ++k) {
predictedStates[k] = propagators[k].getInitialState();
}
// Calculated estimated measurement from predicted sigma point
final EstimatedMeasurement<?> estimated = estimateMeasurement(observedMeasurement, getCurrentMeasurementNumber(),
KalmanEstimatorUtil.filterRelevant(observedMeasurement,
predictedStates));
predictedMeasurements[i] = new ArrayRealVector(estimated.getEstimatedValue())
.ebeDivide(theoreticalStandardDeviation);
}
// Return the predicted measurements
return predictedMeasurements;
}
/** {@inheritDoc} */
@Override
public RealVector getInnovation(final MeasurementDecorator measurement, final RealVector predictedMeas,
final RealVector predictedState, final RealMatrix innovationCovarianceMatrix) {
// Set parameters from predicted state
final RealVector predictedStateCopy = predictedState.copy();
updateParameters(predictedStateCopy);
// Standard deviation as a vector
final RealVector theoreticalStandardDeviation =
MatrixUtils.createRealVector(measurement.getObservedMeasurement().getTheoreticalStandardDeviation());
// Get propagators
final Propagator[] propagators = getEstimatedPropagators();
// Predicted states
for (int k = 0; k < propagators.length; ++k) {
setPredictedSpacecraftState(propagators[k].getInitialState(), k);
}
// set estimated value to the predicted value from the filter
final EstimatedMeasurement<?> predictedMeasurement =
estimateMeasurement(measurement.getObservedMeasurement(), getCurrentMeasurementNumber(),
KalmanEstimatorUtil.filterRelevant(measurement.getObservedMeasurement(),
getPredictedSpacecraftStates()));
setPredictedMeasurement(predictedMeasurement);
predictedMeasurement.setEstimatedValue(predictedMeas.ebeMultiply(theoreticalStandardDeviation).toArray());
// Check for outliers
KalmanEstimatorUtil.applyDynamicOutlierFilter(predictedMeasurement, innovationCovarianceMatrix);
// Compute the innovation vector
return KalmanEstimatorUtil.computeInnovationVector(predictedMeasurement,
predictedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation());
}
private RealVector predictState(final AbsoluteDate date,
final RealVector previousState,
final Propagator[] propagators,
final boolean resetState) {
// Initialise predicted state
final RealVector predictedState = previousState.copy();
// Orbital parameters counter
int jOrb = 0;
// Loop over propagators
for (int k = 0; k < propagators.length; ++k) {
// Record original state
final SpacecraftState originalState = propagators[k].getInitialState();
// Propagate
final SpacecraftState predicted = propagators[k].propagate(date);
// Update the builder with the predicted orbit
// This updates the orbital drivers with the values of the predicted orbit
getBuilders().get(k).resetOrbit(predicted.getOrbit());
// Additionally, for PropagatorBuilders which use mass, update the builder with the predicted mass value.
// If any mass changes have occurred during this estimation step, such as maneuvers,
// the updated mass value must be carried over so that new Propagators from this builder start with the updated mass.
if (getBuilders().get(k) instanceof AbstractPropagatorBuilder) {
((AbstractPropagatorBuilder) (getBuilders().get(k))).setMass(predicted.getMass());
}
// The orbital parameters in the state vector are replaced with their predicted values
// The propagation & measurement parameters are not changed by the prediction (i.e. the propagation)
// As the propagator builder was previously updated with the predicted orbit,
// the selected orbital drivers are already up to date with the prediction
for (DelegatingDriver orbitalDriver : getBuilders().get(k).getOrbitalParametersDrivers().getDrivers()) {
if (orbitalDriver.isSelected()) {
orbitalDriver.setReferenceValue(referenceValues[jOrb]);
predictedState.setEntry(jOrb, orbitalDriver.getNormalizedValue());
jOrb += 1;
}
}
// Set the builder back to the original time
if (resetState) {
getBuilders().get(k).resetOrbit(originalState.getOrbit());
}
}
return predictedState;
}
/** Finalize estimation.
* @param observedMeasurement measurement that has just been processed
* @param estimate corrected estimate
*/
public void finalizeEstimation(final ObservedMeasurement<?> observedMeasurement,
final ProcessEstimate estimate) {
// Update the parameters with the estimated state
// The min/max values of the parameters are handled by the ParameterDriver implementation
setCorrectedEstimate(estimate);
updateParameters(estimate.getState());
// Get the estimated propagator (mirroring parameter update in the builder)
// and the estimated spacecraft state
final Propagator[] estimatedPropagators = getEstimatedPropagators();
for (int k = 0; k < estimatedPropagators.length; ++k) {
setCorrectedSpacecraftState(estimatedPropagators[k].getInitialState(), k);
}
// Corrected measurement
setCorrectedMeasurement(estimateMeasurement(observedMeasurement, getCurrentMeasurementNumber(),
KalmanEstimatorUtil.filterRelevant(observedMeasurement,
getCorrectedSpacecraftStates())));
}
/**
* Estimate measurement (without derivatives).
* @param <T> measurement type
* @param observedMeasurement observed measurement
* @param measurementNumber measurement number
* @param spacecraftStates states
* @return estimated measurement
* @since 12.1
*/
private static <T extends ObservedMeasurement<T>> EstimatedMeasurement<T> estimateMeasurement(final ObservedMeasurement<T> observedMeasurement,
final int measurementNumber,
final SpacecraftState[] spacecraftStates) {
final EstimatedMeasurementBase<T> estimatedMeasurementBase = observedMeasurement.
estimateWithoutDerivatives(measurementNumber, measurementNumber,
KalmanEstimatorUtil.filterRelevant(observedMeasurement, spacecraftStates));
return new EstimatedMeasurement<>(estimatedMeasurementBase);
}
/** Update parameter drivers with a normalised state, adjusting state according to the driver limits.
* @param normalizedState the input state
* The min/max allowed values are handled by the parameter themselves.
*/
private void updateParameters(final RealVector normalizedState) {
int i = 0;
for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
// let the parameter handle min/max clipping
driver.setReferenceValue(referenceValues[i]);
driver.setNormalizedValue(normalizedState.getEntry(i));
normalizedState.setEntry(i++, driver.getNormalizedValue());
}
for (final DelegatingDriver driver : getEstimatedPropagationParameters().getDrivers()) {
// let the parameter handle min/max clipping
driver.setNormalizedValue(normalizedState.getEntry(i));
normalizedState.setEntry(i++, driver.getNormalizedValue());
}
for (final DelegatingDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
// let the parameter handle min/max clipping
driver.setNormalizedValue(normalizedState.getEntry(i));
normalizedState.setEntry(i++, driver.getNormalizedValue());
}
}
}