RinexClockParser.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.files.rinex.clock;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.Reader;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.InputMismatchException;
import java.util.List;
import java.util.Locale;
import java.util.Scanner;
import java.util.function.Function;
import java.util.regex.Pattern;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.orekit.annotation.DefaultDataContext;
import org.orekit.data.DataContext;
import org.orekit.data.DataSource;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.files.rinex.AppliedDCBS;
import org.orekit.files.rinex.AppliedPCVS;
import org.orekit.files.rinex.clock.RinexClock.ClockDataType;
import org.orekit.files.rinex.clock.RinexClock.Receiver;
import org.orekit.files.rinex.clock.RinexClock.ReferenceClock;
import org.orekit.frames.Frame;
import org.orekit.gnss.IGSUtils;
import org.orekit.gnss.ObservationType;
import org.orekit.gnss.SatelliteSystem;
import org.orekit.gnss.TimeSystem;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.DateComponents;
import org.orekit.time.TimeComponents;
import org.orekit.time.TimeScale;
import org.orekit.time.TimeScales;
/** A parser for the clock file from the IGS.
* This parser handles versions 2.0 to 3.04 of the RINEX clock files.
* <p> It is able to manage some mistakes in file writing and format compliance such as wrong date format,
* misplaced header blocks or missing information. </p>
* <p> A time system should be specified in the file. However, if it is not, default time system will be chosen
* regarding the satellite system. If it is mixed or not specified, default time system will be UTC. </p>
* <p> Caution, files with missing information in header can lead to wrong data dates and station positions.
* It is advised to check the correctness and format compliance of the clock file to be parsed. </p>
* @see <a href="https://files.igs.org/pub/data/format/rinex_clock300.txt"> 3.00 clock file format</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex_clock302.txt"> 3.02 clock file format</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex_clock304.txt"> 3.04 clock file format</a>
*
* @author Thomas Paulet
* @since 11.0
*/
public class RinexClockParser {
/** Handled clock file format versions. */
private static final List<Double> HANDLED_VERSIONS = Arrays.asList(2.00, 3.00, 3.01, 3.02, 3.04);
/** Pattern for date format yyyy-mm-dd hh:mm. */
private static final Pattern DATE_PATTERN_1 = Pattern.compile("^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}.*$");
/** Pattern for date format yyyymmdd hhmmss zone or YYYYMMDD HHMMSS zone. */
private static final Pattern DATE_PATTERN_2 = Pattern.compile("^[0-9]{8}\\s{1,2}[0-9]{6}.*$");
/** Pattern for date format dd-MONTH-yyyy hh:mm zone or d-MONTH-yyyy hh:mm zone. */
private static final Pattern DATE_PATTERN_3 = Pattern.compile("^[0-9]{1,2}-[a-z,A-Z]{3}-[0-9]{4} [0-9]{2}:[0-9]{2}.*$");
/** Pattern for date format dd-MONTH-yy hh:mm zone or d-MONTH-yy hh:mm zone. */
private static final Pattern DATE_PATTERN_4 = Pattern.compile("^[0-9]{1,2}-[a-z,A-Z]{3}-[0-9]{2} [0-9]{2}:[0-9]{2}.*$");
/** Pattern for date format yyyy MONTH dd hh:mm:ss or yyyy MONTH d hh:mm:ss. */
private static final Pattern DATE_PATTERN_5 = Pattern.compile("^[0-9]{4} [a-z,A-Z]{3} [0-9]{1,2} [0-9]{2}:[0-9]{2}:[0-9]{2}.*$");
/** Spaces delimiters. */
private static final String SPACES = "\\s+";
/** SYS string for line browsing stop. */
private static final String SYS = "SYS";
/** One millimeter, in meters. */
private static final double MILLIMETER = 1.0e-3;
/** Mapping from frame identifier in the file to a {@link Frame}. */
private final Function<? super String, ? extends Frame> frameBuilder;
/** Set of time scales. */
private final TimeScales timeScales;
/** Create a clock file parser using default values.
* <p>
* This constructor uses the {@link DataContext#getDefault() default data context},
* and {@link IGSUtils#guessFrame}.
* </p>
* @see #RinexClockParser(Function)
*/
@DefaultDataContext
public RinexClockParser() {
this(IGSUtils::guessFrame);
}
/** Create a clock file parser and specify the frame builder.
* <p>
* This constructor uses the {@link DataContext#getDefault() default data context}.
* </p>
* @param frameBuilder is a function that can construct a frame from a clock file
* coordinate system string. The coordinate system can be
* any 5 character string e.g. ITR92, IGb08.
* @see #RinexClockParser(Function, TimeScales)
*/
@DefaultDataContext
public RinexClockParser(final Function<? super String, ? extends Frame> frameBuilder) {
this(frameBuilder, DataContext.getDefault().getTimeScales());
}
/** Constructor, build the IGS clock file parser.
* @param frameBuilder is a function that can construct a frame from a clock file
* coordinate system string. The coordinate system can be
* any 5 character string e.g. ITR92, IGb08.
* @param timeScales the set of time scales used for parsing dates.
*/
public RinexClockParser(final Function<? super String, ? extends Frame> frameBuilder,
final TimeScales timeScales) {
this.frameBuilder = frameBuilder;
this.timeScales = timeScales;
}
/**
* Parse an IGS clock file from an input stream using the UTF-8 charset.
*
* <p> This method creates a {@link BufferedReader} from the stream and as such this
* method may read more data than necessary from {@code stream} and the additional
* data will be lost. The other parse methods do not have this issue.
*
* @param stream to read the IGS clock file from
* @return a parsed IGS clock file
* @see #parse(String)
* @see #parse(BufferedReader, String)
* @see #parse(DataSource)
*/
public RinexClock parse(final InputStream stream) {
return parse(new DataSource("<stream>", () -> stream));
}
/**
* Parse an IGS clock file from a file on the local file system.
* @param fileName file name
* @return a parsed IGS clock file
* @see #parse(InputStream)
* @see #parse(BufferedReader, String)
* @see #parse(DataSource)
*/
public RinexClock parse(final String fileName) {
return parse(new DataSource(Paths.get(fileName).toFile()));
}
/**
* Parse an IGS clock file from a stream.
* @param reader containing the clock file
* @param fileName file name
* @return a parsed IGS clock file
* @see #parse(InputStream)
* @see #parse(String)
* @see #parse(DataSource)
*/
public RinexClock parse(final BufferedReader reader, final String fileName) {
return parse(new DataSource(fileName, () -> reader));
}
/** Parse an IGS clock file from a {@link DataSource}.
* @param source source for clock file
* @return a parsed IGS clock file
* @see #parse(InputStream)
* @see #parse(String)
* @see #parse(BufferedReader, String)
* @since 12.1
*/
public RinexClock parse(final DataSource source) {
// initialize internal data structures
final ParseInfo pi = new ParseInfo();
try (Reader reader = source.getOpener().openReaderOnce();
BufferedReader br = new BufferedReader(reader)) {
pi.lineNumber = 0;
Iterable<LineParser> candidateParsers = Collections.singleton(LineParser.HEADER_VERSION);
nextLine:
for (String line = br.readLine(); line != null; line = br.readLine()) {
++pi.lineNumber;
for (final LineParser candidate : candidateParsers) {
if (candidate.canHandle(line)) {
try {
candidate.parse(line, pi);
candidateParsers = candidate.allowedNext();
continue nextLine;
} catch (StringIndexOutOfBoundsException |
NumberFormatException | InputMismatchException e) {
throw new OrekitException(e, OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE,
pi.lineNumber, source.getName(), line);
}
}
}
// no parsers found for this line
throw new OrekitException(OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE,
pi.lineNumber, source.getName(), line);
}
} catch (IOException ioe) {
throw new OrekitException(ioe, LocalizedCoreFormats.SIMPLE_MESSAGE, ioe.getLocalizedMessage());
}
return pi.file;
}
/** Transient data used for parsing a clock file. */
private class ParseInfo {
/** Current line number of the navigation message. */
private int lineNumber;
/** Set of time scales for parsing dates. */
private final TimeScales timeScales;
/** The corresponding clock file object. */
private final RinexClock file;
/** Current satellite system for observation type parsing. */
private SatelliteSystem currentSatelliteSystem;
/** Current start date for reference clocks. */
private AbsoluteDate referenceClockStartDate;
/** Current end date for reference clocks. */
private AbsoluteDate referenceClockEndDate;
/** Pending reference clocks list. */
private List<ReferenceClock> pendingReferenceClocks;
/** Current clock data type. */
private ClockDataType currentDataType;
/** Current receiver/satellite name. */
private String currentName;
/** Current data date components. */
private DateComponents currentDateComponents;
/** Current data time components. */
private TimeComponents currentTimeComponents;
/** Current data number of data values to follow. */
private int currentNumberOfValues;
/** Current data values. */
private double[] currentDataValues;
/** Constructor, build the ParseInfo object. */
protected ParseInfo () {
this.timeScales = RinexClockParser.this.timeScales;
this.file = new RinexClock(frameBuilder);
this.pendingReferenceClocks = new ArrayList<>();
}
}
/** Parsers for specific lines. */
private enum LineParser {
/** Parser for version, file type and satellite system. */
HEADER_VERSION("^.+RINEX VERSION / TYPE( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// First element of the line is format version
final double version = scanner.nextDouble();
// Throw exception if format version is not handled
if (!HANDLED_VERSIONS.contains(version)) {
throw new OrekitException(OrekitMessages.CLOCK_FILE_UNSUPPORTED_VERSION, version);
}
pi.file.setFormatVersion(version);
// Second element is clock file indicator, not used here
// Last element is the satellite system, might be missing
final String satelliteSystemString = line.substring(40, 45).trim();
// Check satellite if system is recorded
if (!satelliteSystemString.isEmpty()) {
// Record satellite system and default time system in clock file object
final SatelliteSystem satelliteSystem = SatelliteSystem.parseSatelliteSystem(satelliteSystemString);
pi.file.setSatelliteSystem(satelliteSystem);
if (satelliteSystem.getObservationTimeScale() != null) {
pi.file.setTimeScale(satelliteSystem.getObservationTimeScale().getTimeScale(pi.timeScales));
}
}
// Set time scale to UTC by default
if (pi.file.getTimeScale() == null) {
pi.file.setTimeScale(pi.timeScales.getUTC());
}
}
}
},
/** Parser for generating program and emiting agency. */
HEADER_PROGRAM("^.+PGM / RUN BY / DATE( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
// First element of the name of the generating program
final String programName = line.substring(0, 20).trim();
pi.file.setProgramName(programName);
// Second element is the name of the emiting agency
final String agencyName = line.substring(20, 40).trim();
pi.file.setAgencyName(agencyName);
// Third element is date
String dateString = "";
if (pi.file.getFormatVersion() < 3.04) {
// Date string location before 3.04 format version
dateString = line.substring(40, 60);
} else {
// Date string location after 3.04 format version
dateString = line.substring(42, 65);
}
parseDateTimeZone(dateString, pi);
}
},
/** Parser for comments. */
HEADER_COMMENT("^.+COMMENT( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
if (pi.file.getFormatVersion() < 3.04) {
pi.file.addComment(line.substring(0, 60).trim());
} else {
pi.file.addComment(line.substring(0, 65).trim());
}
}
},
/** Parser for satellite system and related observation types. */
HEADER_SYSTEM_OBS("^[A-Z] .*SYS / # / OBS TYPES( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// First element of the line is satellite system code
final SatelliteSystem satelliteSystem = SatelliteSystem.parseSatelliteSystem(scanner.next());
pi.currentSatelliteSystem = satelliteSystem;
// Second element is the number of different observation types
scanner.nextInt();
// Parse all observation types
String currentObsType = scanner.next();
while (!currentObsType.equals(SYS)) {
final ObservationType obsType = ObservationType.valueOf(currentObsType);
pi.file.addSystemObservationType(satelliteSystem, obsType);
currentObsType = scanner.next();
}
}
}
},
/** Parser for continuation of satellite system and related observation types. */
HEADER_SYSTEM_OBS_CONTINUATION("^ .*SYS / # / OBS TYPES( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// This is a continuation line, there are only observation types
// Parse all observation types
String currentObsType = scanner.next();
while (!currentObsType.equals(SYS)) {
final ObservationType obsType = ObservationType.valueOf(currentObsType);
pi.file.addSystemObservationType(pi.currentSatelliteSystem, obsType);
currentObsType = scanner.next();
}
}
}
},
/** Parser for data time system. */
HEADER_TIME_SYSTEM("^.+TIME SYSTEM ID( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// Only element is the time system code
final TimeSystem timeSystem = TimeSystem.parseTimeSystem(scanner.next());
final TimeScale timeScale = timeSystem.getTimeScale(pi.timeScales);
pi.file.setTimeSystem(timeSystem);
pi.file.setTimeScale(timeScale);
}
}
},
/** Parser for leap seconds. */
HEADER_LEAP_SECONDS("^.+LEAP SECONDS( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// Only element is the number of leap seconds
final int numberOfLeapSeconds = scanner.nextInt();
pi.file.setNumberOfLeapSeconds(numberOfLeapSeconds);
}
}
},
/** Parser for leap seconds GNSS. */
HEADER_LEAP_SECONDS_GNSS("^.+LEAP SECONDS GNSS( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// Only element is the number of leap seconds GNSS
final int numberOfLeapSecondsGNSS = scanner.nextInt();
pi.file.setNumberOfLeapSecondsGNSS(numberOfLeapSecondsGNSS);
}
}
},
/** Parser for applied differencial code bias corrections. */
HEADER_DCBS("^.+SYS / DCBS APPLIED( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
// First element, if present, is the related satellite system
final String system = line.substring(0, 1);
if (!" ".equals(system)) {
final SatelliteSystem satelliteSystem = SatelliteSystem.parseSatelliteSystem(system);
// Second element is the program name
final String progDCBS = line.substring(2, 20).trim();
// Third element is the source of the corrections
String sourceDCBS = "";
if (pi.file.getFormatVersion() < 3.04) {
sourceDCBS = line.substring(19, 60).trim();
} else {
sourceDCBS = line.substring(22, 65).trim();
}
// Check if sought fields were not actually blanks
if (!progDCBS.isEmpty()) {
pi.file.addAppliedDCBS(new AppliedDCBS(satelliteSystem, progDCBS, sourceDCBS));
}
}
}
},
/** Parser for applied phase center variation corrections. */
HEADER_PCVS("^.+SYS / PCVS APPLIED( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
// First element, if present, is the related satellite system
final String system = line.substring(0, 1);
if (!" ".equals(system)) {
final SatelliteSystem satelliteSystem = SatelliteSystem.parseSatelliteSystem(system);
// Second element is the program name
final String progPCVS = line.substring(2, 20).trim();
// Third element is the source of the corrections
String sourcePCVS = "";
if (pi.file.getFormatVersion() < 3.04) {
sourcePCVS = line.substring(19, 60).trim();
} else {
sourcePCVS = line.substring(22, 65).trim();
}
// Check if sought fields were not actually blanks
if (!progPCVS.isEmpty() || !sourcePCVS.isEmpty()) {
pi.file.addAppliedPCVS(new AppliedPCVS(satelliteSystem, progPCVS, sourcePCVS));
}
}
}
},
/** Parser for the different clock data types that are stored in the file. */
HEADER_TYPES_OF_DATA("^.+# / TYPES OF DATA( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// First element is the number of different types of data
final int numberOfDifferentDataTypes = scanner.nextInt();
// Loop over data types
for (int i = 0; i < numberOfDifferentDataTypes; i++) {
final ClockDataType dataType = ClockDataType.parseClockDataType(scanner.next());
pi.file.addClockDataType(dataType);
}
}
}
},
/** Parser for the station with reference clock. */
HEADER_STATIONS_NAME("^.+STATION NAME / NUM( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// First element is the station clock reference ID
final String stationName = scanner.next();
pi.file.setStationName(stationName);
// Second element is the station clock reference identifier
final String stationIdentifier = scanner.next();
pi.file.setStationIdentifier(stationIdentifier);
}
}
},
/** Parser for the reference clock in case of calibration data. */
HEADER_STATION_CLOCK_REF("^.+STATION CLK REF( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
if (pi.file.getFormatVersion() < 3.04) {
pi.file.setExternalClockReference(line.substring(0, 60).trim());
} else {
pi.file.setExternalClockReference(line.substring(0, 65).trim());
}
}
},
/** Parser for the analysis center. */
HEADER_ANALYSIS_CENTER("^.+ANALYSIS CENTER( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
// First element is IGS AC designator
final String analysisCenterID = line.substring(0, 3).trim();
pi.file.setAnalysisCenterID(analysisCenterID);
// Then, the full name of the analysis center
String analysisCenterName = "";
if (pi.file.getFormatVersion() < 3.04) {
analysisCenterName = line.substring(5, 60).trim();
} else {
analysisCenterName = line.substring(5, 65).trim();
}
pi.file.setAnalysisCenterName(analysisCenterName);
}
},
/** Parser for the number of reference clocks over a period. */
HEADER_NUMBER_OF_CLOCK_REF("^.+# OF CLK REF( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
if (!pi.pendingReferenceClocks.isEmpty()) {
// Modify time span map of the reference clocks to accept the pending reference clock
pi.file.addReferenceClockList(pi.pendingReferenceClocks,
pi.referenceClockStartDate);
pi.pendingReferenceClocks = new ArrayList<>();
}
// First element is the number of reference clocks corresponding to the period
scanner.nextInt();
if (scanner.hasNextInt()) {
// Second element is the start epoch of the period
final int startYear = scanner.nextInt();
final int startMonth = scanner.nextInt();
final int startDay = scanner.nextInt();
final int startHour = scanner.nextInt();
final int startMin = scanner.nextInt();
final double startSec = scanner.nextDouble();
final AbsoluteDate startEpoch = new AbsoluteDate(startYear, startMonth, startDay,
startHour, startMin, startSec,
pi.file.getTimeScale());
pi.referenceClockStartDate = startEpoch;
// Third element is the end epoch of the period
final int endYear = scanner.nextInt();
final int endMonth = scanner.nextInt();
final int endDay = scanner.nextInt();
final int endHour = scanner.nextInt();
final int endMin = scanner.nextInt();
double endSec = 0.0;
if (pi.file.getFormatVersion() < 3.04) {
endSec = Double.parseDouble(line.substring(51, 60));
} else {
endSec = scanner.nextDouble();
}
final AbsoluteDate endEpoch = new AbsoluteDate(endYear, endMonth, endDay,
endHour, endMin, endSec,
pi.file.getTimeScale());
pi.referenceClockEndDate = endEpoch;
} else {
pi.referenceClockStartDate = AbsoluteDate.PAST_INFINITY;
pi.referenceClockEndDate = AbsoluteDate.FUTURE_INFINITY;
}
}
}
},
/** Parser for the reference clock over a period. */
HEADER_ANALYSIS_CLOCK_REF("^.+ANALYSIS CLK REF( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// First element is the name of the receiver/satellite embedding the reference clock
final String referenceName = scanner.next();
// Second element is the reference clock ID
final String clockID = scanner.next();
// Optionally, third element is an a priori clock constraint, by default equal to zero
double clockConstraint = 0.0;
if (scanner.hasNextDouble()) {
clockConstraint = scanner.nextDouble();
}
// Add reference clock to current reference clock list
final ReferenceClock referenceClock = new ReferenceClock(referenceName, clockID, clockConstraint,
pi.referenceClockStartDate, pi.referenceClockEndDate);
pi.pendingReferenceClocks.add(referenceClock);
}
}
},
/** Parser for the number of stations embedded in the file and the related frame. */
HEADER_NUMBER_OF_SOLN_STATIONS("^.+SOLN STA / TRF( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// First element is the number of receivers embedded in the file
scanner.nextInt();
// Second element is the frame linked to given receiver positions
final String frameString = scanner.next();
pi.file.setFrameName(frameString);
}
}
},
/** Parser for the stations embedded in the file and the related positions. */
HEADER_SOLN_STATIONS("^.+SOLN STA NAME / NUM( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
// First element is the receiver designator
String designator = line.substring(0, 10).trim();
// Second element is the receiver identifier
String receiverIdentifier = line.substring(10, 30).trim();
// Third element if X coordinates, in millimeters in the file frame.
String xString = "";
// Fourth element if Y coordinates, in millimeters in the file frame.
String yString = "";
// Fifth element if Z coordinates, in millimeters in the file frame.
String zString = "";
if (pi.file.getFormatVersion() < 3.04) {
designator = line.substring(0, 4).trim();
receiverIdentifier = line.substring(5, 25).trim();
xString = line.substring(25, 36).trim();
yString = line.substring(37, 48).trim();
zString = line.substring(49, 60).trim();
} else {
designator = line.substring(0, 10).trim();
receiverIdentifier = line.substring(10, 30).trim();
xString = line.substring(30, 41).trim();
yString = line.substring(42, 53).trim();
zString = line.substring(54, 65).trim();
}
final double x = MILLIMETER * Double.parseDouble(xString);
final double y = MILLIMETER * Double.parseDouble(yString);
final double z = MILLIMETER * Double.parseDouble(zString);
final Receiver receiver = new Receiver(designator, receiverIdentifier, x, y, z);
pi.file.addReceiver(receiver);
}
},
/** Parser for the number of satellites embedded in the file. */
HEADER_NUMBER_OF_SOLN_SATS("^.+# OF SOLN SATS( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
// Only element in the line is number of satellites, not used here.
// Do nothing...
}
},
/** Parser for the satellites embedded in the file. */
HEADER_PRN_LIST("^.+PRN LIST( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// Only PRN numbers are stored in these lines
// Initialize first PRN number
String prn = scanner.next();
// Browse the line until its end
while (!prn.equals("PRN")) {
pi.file.addSatellite(prn);
prn = scanner.next();
}
}
}
},
/** Parser for the end of header. */
HEADER_END("^.+END OF HEADER( )*$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
if (!pi.pendingReferenceClocks.isEmpty()) {
// Modify time span map of the reference clocks to accept the pending reference clock
pi.file.addReferenceClockList(pi.pendingReferenceClocks, pi.referenceClockStartDate);
}
}
/** {@inheritDoc} */
@Override
public Iterable<LineParser> allowedNext() {
return Collections.singleton(CLOCK_DATA);
}
},
/** Parser for a clock data line. */
CLOCK_DATA("(^AR |^AS |^CR |^DR |^MS ).+$") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// Initialise current values
pi.currentDataValues = new double[6];
// First element is clock data type
pi.currentDataType = ClockDataType.parseClockDataType(scanner.next());
// Second element is receiver/satellite name
pi.currentName = scanner.next();
// Third element is data epoch
final int year = scanner.nextInt();
final int month = scanner.nextInt();
final int day = scanner.nextInt();
final int hour = scanner.nextInt();
final int min = scanner.nextInt();
final double sec = scanner.nextDouble();
pi.currentDateComponents = new DateComponents(year, month, day);
pi.currentTimeComponents = new TimeComponents(hour, min, sec);
// Fourth element is number of data values
pi.currentNumberOfValues = scanner.nextInt();
// Get the values in this line, there are at most 2.
// Some entries claim less values than there actually are.
// All values are added to the set, regardless of their claimed number.
int i = 0;
while (scanner.hasNextDouble()) {
pi.currentDataValues[i++] = scanner.nextDouble();
}
// Check if continuation line is required
if (pi.currentNumberOfValues <= 2) {
// No continuation line is required
pi.file.addClockData(pi.currentName, pi.file.new ClockDataLine(pi.currentDataType,
pi.currentName,
pi.currentDateComponents,
pi.currentTimeComponents,
pi.currentNumberOfValues,
pi.currentDataValues[0],
pi.currentDataValues[1],
0.0, 0.0, 0.0, 0.0));
}
}
}
/** {@inheritDoc} */
@Override
public Iterable<LineParser> allowedNext() {
return Arrays.asList(CLOCK_DATA, CLOCK_DATA_CONTINUATION);
}
},
/** Parser for a continuation clock data line. */
CLOCK_DATA_CONTINUATION("^ .+") {
/** {@inheritDoc} */
@Override
public void parse(final String line, final ParseInfo pi) {
try (Scanner s1 = new Scanner(line);
Scanner s2 = s1.useDelimiter(SPACES);
Scanner scanner = s2.useLocale(Locale.US)) {
// Get the values in this continuation line.
// Some entries claim less values than there actually are.
// All values are added to the set, regardless of their claimed number.
int i = 2;
while (scanner.hasNextDouble()) {
pi.currentDataValues[i++] = scanner.nextDouble();
}
// Add clock data line
pi.file.addClockData(pi.currentName, pi.file.new ClockDataLine(pi.currentDataType,
pi.currentName,
pi.currentDateComponents,
pi.currentTimeComponents,
pi.currentNumberOfValues,
pi.currentDataValues[0],
pi.currentDataValues[1],
pi.currentDataValues[2],
pi.currentDataValues[3],
pi.currentDataValues[4],
pi.currentDataValues[5]));
}
}
/** {@inheritDoc} */
@Override
public Iterable<LineParser> allowedNext() {
return Collections.singleton(CLOCK_DATA);
}
};
/** Pattern for identifying line. */
private final Pattern pattern;
/** Simple constructor.
* @param lineRegexp regular expression for identifying line
*/
LineParser(final String lineRegexp) {
pattern = Pattern.compile(lineRegexp);
}
/** Parse a line.
* @param line line to parse
* @param pi holder for transient data
*/
public abstract void parse(String line, ParseInfo pi);
/** Get the allowed parsers for next line.
* <p>
* Because the standard only recommends an order for header keys,
* the default implementation of the method returns all the
* header keys. Specific implementations must overrides the method.
* </p>
* @return allowed parsers for next line
*/
public Iterable<LineParser> allowedNext() {
return Arrays.asList(HEADER_PROGRAM, HEADER_COMMENT, HEADER_SYSTEM_OBS, HEADER_SYSTEM_OBS_CONTINUATION, HEADER_TIME_SYSTEM, HEADER_LEAP_SECONDS,
HEADER_LEAP_SECONDS_GNSS, HEADER_DCBS, HEADER_PCVS, HEADER_TYPES_OF_DATA, HEADER_STATIONS_NAME, HEADER_STATION_CLOCK_REF,
HEADER_ANALYSIS_CENTER, HEADER_NUMBER_OF_CLOCK_REF, HEADER_ANALYSIS_CLOCK_REF, HEADER_NUMBER_OF_SOLN_STATIONS,
HEADER_SOLN_STATIONS, HEADER_NUMBER_OF_SOLN_SATS, HEADER_PRN_LIST, HEADER_END);
}
/** Check if parser can handle line.
* @param line line to parse
* @return true if parser can handle the specified line
*/
public boolean canHandle(final String line) {
return pattern.matcher(line).matches();
}
/** Parse existing date - time - zone formats.
* If zone field is not missing, a proper Orekit date can be created and set into clock file object.
* This feature depends on the date format.
* @param dateString the whole date - time - zone string
* @param pi holder for transient data
*/
private static void parseDateTimeZone(final String dateString, final ParseInfo pi) {
String date = "";
String time = "";
String zone = "";
DateComponents dateComponents = null;
TimeComponents timeComponents = null;
if (DATE_PATTERN_1.matcher(dateString).matches()) {
date = dateString.substring(0, 10).trim();
time = dateString.substring(11, 16).trim();
zone = dateString.substring(16).trim();
} else if (DATE_PATTERN_2.matcher(dateString).matches()) {
date = dateString.substring(0, 8).trim();
time = dateString.substring(9, 16).trim();
zone = dateString.substring(16).trim();
if (!zone.isEmpty()) {
// Get date and time components
dateComponents = new DateComponents(Integer.parseInt(date.substring(0, 4)),
Integer.parseInt(date.substring(4, 6)),
Integer.parseInt(date.substring(6, 8)));
timeComponents = new TimeComponents(Integer.parseInt(time.substring(0, 2)),
Integer.parseInt(time.substring(2, 4)),
Integer.parseInt(time.substring(4, 6)));
}
} else if (DATE_PATTERN_3.matcher(dateString).matches()) {
date = dateString.substring(0, 11).trim();
time = dateString.substring(11, 17).trim();
zone = dateString.substring(17).trim();
} else if (DATE_PATTERN_4.matcher(dateString).matches()) {
date = dateString.substring(0, 9).trim();
time = dateString.substring(9, 15).trim();
zone = dateString.substring(15).trim();
} else if (DATE_PATTERN_5.matcher(dateString).matches()) {
date = dateString.substring(0, 11).trim();
time = dateString.substring(11, 20).trim();
} else {
// Format is not handled or date is missing. Do nothing...
}
pi.file.setCreationDateString(date);
pi.file.setCreationTimeString(time);
pi.file.setCreationTimeZoneString(zone);
if (dateComponents != null) {
pi.file.setCreationDate(new AbsoluteDate(dateComponents,
timeComponents,
TimeSystem.parseTimeSystem(zone).getTimeScale(pi.timeScales)));
}
}
}
}