RinexObservationParser.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.files.rinex.observation;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.Reader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.function.Function;
import java.util.function.Predicate;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.geometry.euclidean.twod.Vector2D;
import org.hipparchus.util.FastMath;
import org.orekit.annotation.DefaultDataContext;
import org.orekit.data.DataContext;
import org.orekit.data.DataSource;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.files.rinex.AppliedDCBS;
import org.orekit.files.rinex.AppliedPCVS;
import org.orekit.files.rinex.section.RinexLabels;
import org.orekit.files.rinex.utils.parsing.RinexUtils;
import org.orekit.gnss.ObservationTimeScale;
import org.orekit.gnss.ObservationType;
import org.orekit.gnss.SatInSystem;
import org.orekit.gnss.SatelliteSystem;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.TimeScale;
import org.orekit.time.TimeScales;
/** Parser for Rinex measurements files.
* <p>
* Supported versions are: 2.00, 2.10, 2.11, 2.12 (unofficial), 2.20 (unofficial),
* 3.00, 3.01, 3.02, 3.03, 3.04, 3.05, and 4.00.
* </p>
* @see <a href="https://files.igs.org/pub/data/format/rinex2.txt">rinex 2.0</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex210.txt">rinex 2.10</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex211.pdf">rinex 2.11</a>
* @see <a href="http://www.aiub.unibe.ch/download/rinex/rinex212.txt">unofficial rinex 2.12</a>
* @see <a href="http://www.aiub.unibe.ch/download/rinex/rnx_leo.txt">unofficial rinex 2.20</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex300.pdf">rinex 3.00</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex301.pdf">rinex 3.01</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex302.pdf">rinex 3.02</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex303.pdf">rinex 3.03</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex304.pdf">rinex 3.04</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex305.pdf">rinex 3.05</a>
* @see <a href="https://files.igs.org/pub/data/format/rinex_4.00.pdf">rinex 4.00</a>
* @since 12.0
*/
public class RinexObservationParser {
/** Default name pattern for rinex 2 observation files. */
public static final String DEFAULT_RINEX_2_NAMES = "^\\w{4}\\d{3}[0a-x](?:\\d{2})?\\.\\d{2}[oO]$";
/** Default name pattern for rinex 3 observation files. */
public static final String DEFAULT_RINEX_3_NAMES = "^\\w{9}_\\w{1}_\\d{11}_\\d{2}\\w_\\d{2}\\w{1}_\\w{2}\\.rnx$";
/** Maximum number of satellites per line in Rinex 2 format . */
private static final int MAX_SAT_PER_RINEX_2_LINE = 12;
/** Maximum number of observations per line in Rinex 2 format. */
private static final int MAX_OBS_PER_RINEX_2_LINE = 5;
/** Set of time scales. */
private final TimeScales timeScales;
/** Simple constructor.
* <p>
* This constructor uses the {@link DataContext#getDefault() default data context}.
* </p>
*/
@DefaultDataContext
public RinexObservationParser() {
this(DataContext.getDefault().getTimeScales());
}
/**
* Create a RINEX loader/parser with the given source of RINEX auxiliary data files.
* @param timeScales the set of time scales to use when parsing dates.
* @since 12.0
*/
public RinexObservationParser(final TimeScales timeScales) {
this.timeScales = timeScales;
}
/**
* Parse RINEX observations messages.
* @param source source providing the data to parse
* @return parsed observations file
*/
public RinexObservation parse(final DataSource source) {
Iterable<LineParser> candidateParsers = Collections.singleton(LineParser.VERSION);
// placeholders for parsed data
final ParseInfo parseInfo = new ParseInfo(source.getName());
try (Reader reader = source.getOpener().openReaderOnce();
BufferedReader br = new BufferedReader(reader)) {
++parseInfo.lineNumber;
nextLine:
for (String line = br.readLine(); line != null; line = br.readLine()) {
for (final LineParser candidate : candidateParsers) {
if (candidate.canHandle.test(line)) {
try {
candidate.parsingMethod.parse(line, parseInfo);
++parseInfo.lineNumber;
candidateParsers = candidate.allowedNextProvider.apply(parseInfo);
continue nextLine;
} catch (StringIndexOutOfBoundsException | NumberFormatException e) {
throw new OrekitException(e,
OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE,
parseInfo.lineNumber, source.getName(), line);
}
}
}
// no parsers found for this line
throw new OrekitException(OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE,
parseInfo.lineNumber, source.getName(), line);
}
} catch (IOException ioe) {
throw new OrekitException(ioe, LocalizedCoreFormats.SIMPLE_MESSAGE, ioe.getLocalizedMessage());
}
return parseInfo.file;
}
/** Transient data used for parsing a RINEX observation messages file.
* @since 12.0
*/
private class ParseInfo {
/** Name of the data source. */
private final String name;
/** Set of time scales for parsing dates. */
private final TimeScales timeScales;
/** Current line number of the navigation message. */
private int lineNumber;
/** Rinex file. */
private final RinexObservation file;
/** Date of the observation. */
private AbsoluteDate tObs;
/** Indicator that time of first observation was already fixed. */
private boolean tFirstFixed;
/** Indicator that time of last observation was already fixed. */
private boolean tLastFixed;
/** Receiver clock offset (seconds). */
private double rcvrClkOffset;
/** time scale for parsing dates. */
private TimeScale timeScale;
/** Number of observation types. */
private int nbTypes;
/** Number of satellites in the current observations block. */
private int nbSatObs;
/** Number of scaling factors. */
private int nbObsScaleFactor;
/** Index of satellite in current observation. */
private int indexObsSat;
/** Line number of start of next observation. */
private int nextObsStartLineNumber;
/** Current satellite system. */
private SatelliteSystem currentSystem;
/** Number of satellites affected by phase shifts. */
private int phaseShiftNbSat;
/** Number of GLONASS satellites. */
private int nbGlonass;
/** Satellites affected by phase shift. */
private final List<SatInSystem> satPhaseShift;
/** Type of observation affected by phase shift. */
private ObservationType phaseShiftTypeObs;
/** Phase shift correction. */
private double corrPhaseShift;
/** Indicator for completed header. */
private boolean headerCompleted;
/** Indicator for skipping special records (eventFlag from 2 to 5). */
private boolean specialRecord;
/** Indicator for skipping cyckle slip records (enventFlag == 6). */
private boolean cycleSlip;
/** Event flag. */
private int eventFlag;
/** Scaling factors. */
private final List<ObservationType> typesObsScaleFactor;
/** Types of observations. */
private final List<ObservationType> typesObs;
/** Observations. */
private final List<ObservationData> observations;
/** Satellites in current observation. */
private final List<SatInSystem> satObs;
/** Current satellite. */
private SatInSystem currentSat;
/** Constructor, build the ParseInfo object.
* @param name name of the data source
*/
ParseInfo(final String name) {
// Initialize default values for fields
this.name = name;
this.timeScales = RinexObservationParser.this.timeScales;
this.file = new RinexObservation();
this.lineNumber = 0;
this.tObs = AbsoluteDate.PAST_INFINITY;
this.tFirstFixed = false;
this.tLastFixed = false;
this.timeScale = null;
this.nbTypes = -1;
this.nbSatObs = -1;
this.nbGlonass = -1;
this.phaseShiftNbSat = -1;
this.nbObsScaleFactor = -1;
this.nextObsStartLineNumber = -1;
this.typesObs = new ArrayList<>();
this.observations = new ArrayList<>();
this.satPhaseShift = new ArrayList<>();
this.typesObsScaleFactor = new ArrayList<>();
this.satObs = new ArrayList<>();
}
/** Set observation date, taking care of receiver/absolute time scales.
* @param rawDate date as parsed, prior to any time scale modification
*/
private void setTObs(final AbsoluteDate rawDate) {
final RinexObservationHeader header = file.getHeader();
if (header.getClockOffsetApplied()) {
// date was already in an absolute time scale
tObs = rawDate;
} else {
// the epoch was expressed in receiver clock
// we need to convert it to absolute date
if (FastMath.abs(rawDate.durationFrom(header.getTFirstObs())) < 1.0e-6 &&
!tFirstFixed) {
// we need to fix the first date in the header too
header.setTFirstObs(header.getTFirstObs().shiftedBy(-rcvrClkOffset));
tFirstFixed = true;
}
if (FastMath.abs(rawDate.durationFrom(header.getTLastObs())) < 1.0e-6 &&
!tLastFixed) {
// we need to fix the last date in the header too
header.setTLastObs(header.getTLastObs().shiftedBy(-rcvrClkOffset));
tLastFixed = true;
}
tObs = rawDate.shiftedBy(-rcvrClkOffset);
}
}
}
/** Parsers for specific lines. */
private enum LineParser {
/** Parser for version, file type and satellite system. */
VERSION(line -> RinexLabels.VERSION.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> RinexUtils.parseVersionFileTypeSatelliteSystem(line, parseInfo.name, parseInfo.file.getHeader(),
2.00, 2.10, 2.11, 2.12, 2.20,
3.00, 3.01, 3.02, 3.03, 3.04, 3.05, 4.00),
LineParser::headerNext),
/** Parser for generating program and emiting agency. */
PROGRAM(line -> RinexLabels.PROGRAM.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> RinexUtils.parseProgramRunByDate(line, parseInfo.lineNumber, parseInfo.name,
parseInfo.timeScales, parseInfo.file.getHeader()),
LineParser::headerNext),
/** Parser for comments. */
COMMENT(line -> RinexLabels.COMMENT.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> RinexUtils.parseComment(parseInfo.lineNumber, line, parseInfo.file),
LineParser::commentNext),
/** Parser for marker name. */
MARKER_NAME(line -> RinexLabels.MARKER_NAME.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setMarkerName(RinexUtils.parseString(line, 0, RinexUtils.LABEL_INDEX)),
LineParser::headerNext),
/** Parser for marker number. */
MARKER_NUMBER(line -> RinexLabels.MARKER_NUMBER.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setMarkerNumber(RinexUtils.parseString(line, 0, 20)),
LineParser::headerNext),
/** Parser for marker type. */
MARKER_TYPE(line -> RinexLabels.MARKER_TYPE.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setMarkerType(RinexUtils.parseString(line, 0, 20)),
LineParser::headerNext),
/** Parser for observer agency. */
OBSERVER_AGENCY(line -> RinexLabels.OBSERVER_AGENCY.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
parseInfo.file.getHeader().setObserverName(RinexUtils.parseString(line, 0, 20));
parseInfo.file.getHeader().setAgencyName(RinexUtils.parseString(line, 20, 40));
},
LineParser::headerNext),
/** Parser for receiver number, type and version. */
REC_NB_TYPE_VERS(line -> RinexLabels.REC_NB_TYPE_VERS.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
parseInfo.file.getHeader().setReceiverNumber(RinexUtils.parseString(line, 0, 20));
parseInfo.file.getHeader().setReceiverType(RinexUtils.parseString(line, 20, 20));
parseInfo.file.getHeader().setReceiverVersion(RinexUtils.parseString(line, 40, 20));
},
LineParser::headerNext),
/** Parser for antenna number and type. */
ANT_NB_TYPE(line -> RinexLabels.ANT_NB_TYPE.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
parseInfo.file.getHeader().setAntennaNumber(RinexUtils.parseString(line, 0, 20));
parseInfo.file.getHeader().setAntennaType(RinexUtils.parseString(line, 20, 20));
},
LineParser::headerNext),
/** Parser for approximative position. */
APPROX_POSITION_XYZ(line -> RinexLabels.APPROX_POSITION_XYZ.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setApproxPos(new Vector3D(RinexUtils.parseDouble(line, 0, 14),
RinexUtils.parseDouble(line, 14, 14),
RinexUtils.parseDouble(line, 28, 14))),
LineParser::headerNext),
/** Parser for antenna reference point. */
ANTENNA_DELTA_H_E_N(line -> RinexLabels.ANTENNA_DELTA_H_E_N.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
parseInfo.file.getHeader().setAntennaHeight(RinexUtils.parseDouble(line, 0, 14));
parseInfo.file.getHeader().setEccentricities(new Vector2D(RinexUtils.parseDouble(line, 14, 14),
RinexUtils.parseDouble(line, 28, 14)));
},
LineParser::headerNext),
/** Parser for antenna reference point. */
ANTENNA_DELTA_X_Y_Z(line -> RinexLabels.ANTENNA_DELTA_X_Y_Z.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setAntennaReferencePoint(new Vector3D(RinexUtils.parseDouble(line, 0, 14),
RinexUtils.parseDouble(line, 14, 14),
RinexUtils.parseDouble(line, 28, 14))),
LineParser::headerNext),
/** Parser for antenna phase center. */
ANTENNA_PHASE_CENTER(line -> RinexLabels.ANTENNA_PHASE_CENTER.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
parseInfo.file.getHeader().setPhaseCenterSystem(SatelliteSystem.parseSatelliteSystem(RinexUtils.parseString(line, 0, 1)));
parseInfo.file.getHeader().setObservationCode(RinexUtils.parseString(line, 2, 3));
parseInfo.file.getHeader().setAntennaPhaseCenter(new Vector3D(RinexUtils.parseDouble(line, 5, 9),
RinexUtils.parseDouble(line, 14, 14),
RinexUtils.parseDouble(line, 28, 14)));
},
LineParser::headerNext),
/** Parser for antenna bore sight. */
ANTENNA_B_SIGHT_XYZ(line -> RinexLabels.ANTENNA_B_SIGHT_XYZ.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setAntennaBSight(new Vector3D(RinexUtils.parseDouble(line, 0, 14),
RinexUtils.parseDouble(line, 14, 14),
RinexUtils.parseDouble(line, 28, 14))),
LineParser::headerNext),
/** Parser for antenna zero direction. */
ANTENNA_ZERODIR_AZI(line -> RinexLabels.ANTENNA_ZERODIR_AZI.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setAntennaAzimuth(FastMath.toRadians(RinexUtils.parseDouble(line, 0, 14))),
LineParser::headerNext),
/** Parser for antenna zero direction. */
ANTENNA_ZERODIR_XYZ(line -> RinexLabels.ANTENNA_ZERODIR_XYZ.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setAntennaZeroDirection(new Vector3D(RinexUtils.parseDouble(line, 0, 14),
RinexUtils.parseDouble(line, 14, 14),
RinexUtils.parseDouble(line, 28, 14))),
LineParser::headerNext),
/** Parser for wavelength factors. */
WAVELENGTH_FACT_L1_2(line -> RinexLabels.WAVELENGTH_FACT_L1_2.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
// optional line in Rinex 2 header, not stored for now
},
LineParser::headerNext),
/** Parser for observations scale factor. */
OBS_SCALE_FACTOR(line -> RinexLabels.OBS_SCALE_FACTOR.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
final int scaleFactor = FastMath.max(1, RinexUtils.parseInt(line, 0, 6));
final int nbObsScaleFactor = RinexUtils.parseInt(line, 6, 6);
final List<ObservationType> types = new ArrayList<>(nbObsScaleFactor);
for (int i = 0; i < nbObsScaleFactor; i++) {
types.add(ObservationType.valueOf(RinexUtils.parseString(line, 16 + (6 * i), 2)));
}
parseInfo.file.getHeader().addScaleFactorCorrection(parseInfo.file.getHeader().getSatelliteSystem(),
new ScaleFactorCorrection(scaleFactor, types));
},
LineParser::headerNext),
/** Parser for center of mass. */
CENTER_OF_MASS_XYZ(line -> RinexLabels.CENTER_OF_MASS_XYZ.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setCenterMass(new Vector3D(RinexUtils.parseDouble(line, 0, 14),
RinexUtils.parseDouble(line, 14, 14),
RinexUtils.parseDouble(line, 28, 14))),
LineParser::headerNext),
/** Parser for DOI.
* @since 12.0
*/
DOI(line -> RinexLabels.DOI.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setDoi(RinexUtils.parseString(line, 0, RinexUtils.LABEL_INDEX)),
LineParser::headerNext),
/** Parser for license.
* @since 12.0
*/
LICENSE(line -> RinexLabels.LICENSE.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setLicense(RinexUtils.parseString(line, 0, RinexUtils.LABEL_INDEX)),
LineParser::headerNext),
/** Parser for station information.
* @since 12.0
*/
STATION_INFORMATION(line -> RinexLabels.STATION_INFORMATION.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setStationInformation(RinexUtils.parseString(line, 0, RinexUtils.LABEL_INDEX)),
LineParser::headerNext),
/** Parser for number and types of observations. */
SYS_NB_TYPES_OF_OBSERV(line -> RinexLabels.SYS_NB_TYPES_OF_OBSERV.matches(RinexUtils.getLabel(line)) ||
RinexLabels.NB_TYPES_OF_OBSERV.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
final double version = parseInfo.file.getHeader().getFormatVersion();
if (parseInfo.nbTypes < 0) {
// first line of types of observations
if (version < 3) {
// Rinex 2 has only one system
parseInfo.currentSystem = parseInfo.file.getHeader().getSatelliteSystem();
parseInfo.nbTypes = RinexUtils.parseInt(line, 0, 6);
} else {
// Rinex 3 and above allow mixed systems
parseInfo.currentSystem = SatelliteSystem.parseSatelliteSystem(RinexUtils.parseString(line, 0, 1));
parseInfo.nbTypes = RinexUtils.parseInt(line, 3, 3);
if (parseInfo.currentSystem != parseInfo.file.getHeader().getSatelliteSystem() &&
parseInfo.file.getHeader().getSatelliteSystem() != SatelliteSystem.MIXED) {
throw new OrekitException(OrekitMessages.INCONSISTENT_SATELLITE_SYSTEM,
parseInfo.lineNumber, parseInfo.name,
parseInfo.file.getHeader().getSatelliteSystem(),
parseInfo.currentSystem);
}
}
}
final int firstIndex = version < 3 ? 10 : 7;
final int increment = version < 3 ? 6 : 4;
final int size = version < 3 ? 2 : 3;
for (int i = firstIndex;
(i + size) <= RinexUtils.LABEL_INDEX && parseInfo.typesObs.size() < parseInfo.nbTypes;
i += increment) {
final String type = RinexUtils.parseString(line, i, size);
try {
parseInfo.typesObs.add(ObservationType.valueOf(type));
} catch (IllegalArgumentException iae) {
throw new OrekitException(iae, OrekitMessages.UNKNOWN_RINEX_FREQUENCY,
type, parseInfo.name, parseInfo.lineNumber);
}
}
if (parseInfo.typesObs.size() == parseInfo.nbTypes) {
// we have completed the list
parseInfo.file.getHeader().setTypeObs(parseInfo.currentSystem, parseInfo.typesObs);
parseInfo.typesObs.clear();
parseInfo.nbTypes = -1;
}
},
LineParser::headerNbTypesObs),
/** Parser for unit of signal strength. */
SIGNAL_STRENGTH_UNIT(line -> RinexLabels.SIGNAL_STRENGTH_UNIT.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setSignalStrengthUnit(RinexUtils.parseString(line, 0, 20)),
LineParser::headerNext),
/** Parser for observation interval. */
INTERVAL(line -> RinexLabels.INTERVAL.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setInterval(RinexUtils.parseDouble(line, 0, 10)),
LineParser::headerNext),
/** Parser for time of first observation. */
TIME_OF_FIRST_OBS(line -> RinexLabels.TIME_OF_FIRST_OBS.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
if (parseInfo.file.getHeader().getSatelliteSystem() == SatelliteSystem.MIXED) {
// in case of mixed data, time scale must be specified in the Time of First Observation line
try {
parseInfo.timeScale = ObservationTimeScale.
valueOf(RinexUtils.parseString(line, 48, 3)).
getTimeScale(parseInfo.timeScales);
} catch (IllegalArgumentException iae) {
throw new OrekitException(iae,
OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE,
parseInfo.lineNumber, parseInfo.name, line);
}
} else {
final ObservationTimeScale observationTimeScale = parseInfo.file.getHeader().getSatelliteSystem().getObservationTimeScale();
if (observationTimeScale == null) {
throw new OrekitException(OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE,
parseInfo.lineNumber, parseInfo.name, line);
}
parseInfo.timeScale = observationTimeScale.getTimeScale(parseInfo.timeScales);
}
parseInfo.file.getHeader().setTFirstObs(new AbsoluteDate(RinexUtils.parseInt(line, 0, 6),
RinexUtils.parseInt(line, 6, 6),
RinexUtils.parseInt(line, 12, 6),
RinexUtils.parseInt(line, 18, 6),
RinexUtils.parseInt(line, 24, 6),
RinexUtils.parseDouble(line, 30, 13),
parseInfo.timeScale));
},
LineParser::headerNext),
/** Parser for time of last observation. */
TIME_OF_LAST_OBS(line -> RinexLabels.TIME_OF_LAST_OBS.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setTLastObs(new AbsoluteDate(RinexUtils.parseInt(line, 0, 6),
RinexUtils.parseInt(line, 6, 6),
RinexUtils.parseInt(line, 12, 6),
RinexUtils.parseInt(line, 18, 6),
RinexUtils.parseInt(line, 24, 6),
RinexUtils.parseDouble(line, 30, 13),
parseInfo.timeScale)),
LineParser::headerNext),
/** Parser for indicator of receiver clock offset application. */
RCV_CLOCK_OFFS_APPL(line -> RinexLabels.RCV_CLOCK_OFFS_APPL.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setClockOffsetApplied(RinexUtils.parseInt(line, 0, 6) > 0),
LineParser::headerNext),
/** Parser for differential code bias corrections. */
SYS_DCBS_APPLIED(line -> RinexLabels.SYS_DCBS_APPLIED.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().addAppliedDCBS(new AppliedDCBS(SatelliteSystem.parseSatelliteSystem(RinexUtils.parseString(line, 0, 1)),
RinexUtils.parseString(line, 2, 17),
RinexUtils.parseString(line, 20, 40))),
LineParser::headerNext),
/** Parser for phase center variations corrections. */
SYS_PCVS_APPLIED(line -> RinexLabels.SYS_PCVS_APPLIED.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().addAppliedPCVS(new AppliedPCVS(SatelliteSystem.parseSatelliteSystem(RinexUtils.parseString(line, 0, 1)),
RinexUtils.parseString(line, 2, 17),
RinexUtils.parseString(line, 20, 40))),
LineParser::headerNext),
/** Parser for scale factor. */
SYS_SCALE_FACTOR(line -> RinexLabels.SYS_SCALE_FACTOR.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
int scaleFactor = 1;
if (parseInfo.nbObsScaleFactor < 0) {
// first line of scale factor
parseInfo.currentSystem = SatelliteSystem.parseSatelliteSystem(RinexUtils.parseString(line, 0, 1));
scaleFactor = RinexUtils.parseInt(line, 2, 4);
parseInfo.nbObsScaleFactor = RinexUtils.parseInt(line, 8, 2);
}
if (parseInfo.nbObsScaleFactor == 0) {
parseInfo.typesObsScaleFactor.addAll(parseInfo.file.getHeader().getTypeObs().get(parseInfo.currentSystem));
} else {
for (int i = 11; i < RinexUtils.LABEL_INDEX && parseInfo.typesObsScaleFactor.size() < parseInfo.nbObsScaleFactor; i += 4) {
parseInfo.typesObsScaleFactor.add(ObservationType.valueOf(RinexUtils.parseString(line, i, 3)));
}
}
if (parseInfo.typesObsScaleFactor.size() >= parseInfo.nbObsScaleFactor) {
// we have completed the list
parseInfo.file.getHeader().addScaleFactorCorrection(parseInfo.currentSystem,
new ScaleFactorCorrection(scaleFactor,
new ArrayList<>(parseInfo.typesObsScaleFactor)));
parseInfo.nbObsScaleFactor = -1;
parseInfo.typesObsScaleFactor.clear();
}
},
LineParser::headerNext),
/** Parser for phase shift. */
SYS_PHASE_SHIFT(line -> RinexLabels.SYS_PHASE_SHIFT.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
if (parseInfo.phaseShiftNbSat < 0) {
// first line of phase shift
parseInfo.currentSystem = SatelliteSystem.parseSatelliteSystem(RinexUtils.parseString(line, 0, 1));
final String to = RinexUtils.parseString(line, 2, 3);
parseInfo.phaseShiftTypeObs = to.isEmpty() ? null : ObservationType.valueOf(to.length() < 3 ? "L" + to : to);
parseInfo.corrPhaseShift = RinexUtils.parseDouble(line, 6, 8);
parseInfo.phaseShiftNbSat = RinexUtils.parseInt(line, 16, 2);
}
for (int i = 19; i + 3 < RinexUtils.LABEL_INDEX && parseInfo.satPhaseShift.size() < parseInfo.phaseShiftNbSat; i += 4) {
final SatelliteSystem system = line.charAt(i) == ' ' ?
parseInfo.currentSystem :
SatelliteSystem.parseSatelliteSystem(RinexUtils.parseString(line, i, 1));
final int prn = RinexUtils.parseInt(line, i + 1, 2);
parseInfo.satPhaseShift.add(new SatInSystem(system,
system == SatelliteSystem.SBAS ?
prn + 100 :
(system == SatelliteSystem.QZSS ? prn + 192 : prn)));
}
if (parseInfo.satPhaseShift.size() == parseInfo.phaseShiftNbSat) {
// we have completed the list
parseInfo.file.getHeader().addPhaseShiftCorrection(new PhaseShiftCorrection(parseInfo.currentSystem,
parseInfo.phaseShiftTypeObs,
parseInfo.corrPhaseShift,
new ArrayList<>(parseInfo.satPhaseShift)));
parseInfo.phaseShiftNbSat = -1;
parseInfo.satPhaseShift.clear();
}
},
LineParser::headerPhaseShift),
/** Parser for GLONASS slot and frequency number. */
GLONASS_SLOT_FRQ_NB(line -> RinexLabels.GLONASS_SLOT_FRQ_NB.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
if (parseInfo.nbGlonass < 0) {
// first line of GLONASS satellite/frequency association
parseInfo.nbGlonass = RinexUtils.parseInt(line, 0, 3);
}
for (int i = 4;
i < RinexUtils.LABEL_INDEX && parseInfo.file.getHeader().getGlonassChannels().size() < parseInfo.nbGlonass;
i += 7) {
final SatelliteSystem system = SatelliteSystem.parseSatelliteSystem(RinexUtils.parseString(line, i, 1));
final int prn = RinexUtils.parseInt(line, i + 1, 2);
final int k = RinexUtils.parseInt(line, i + 4, 2);
parseInfo.file.getHeader().addGlonassChannel(new GlonassSatelliteChannel(new SatInSystem(system, prn), k));
}
},
LineParser::headerNext),
/** Parser for GLONASS phase bias corrections. */
GLONASS_COD_PHS_BIS(line -> RinexLabels.GLONASS_COD_PHS_BIS.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
// C1C signal
final String c1c = RinexUtils.parseString(line, 1, 3);
if (!c1c.isEmpty()) {
parseInfo.file.getHeader().setC1cCodePhaseBias(RinexUtils.parseDouble(line, 5, 8));
}
// C1P signal
final String c1p = RinexUtils.parseString(line, 14, 3);
if (!c1p.isEmpty()) {
parseInfo.file.getHeader().setC1pCodePhaseBias(RinexUtils.parseDouble(line, 18, 8));
}
// C2C signal
final String c2c = RinexUtils.parseString(line, 27, 3);
if (!c2c.isEmpty()) {
parseInfo.file.getHeader().setC2cCodePhaseBias(RinexUtils.parseDouble(line, 31, 8));
}
// C2P signal
final String c2p = RinexUtils.parseString(line, 40, 3);
if (!c2p.isEmpty()) {
parseInfo.file.getHeader().setC2pCodePhaseBias(RinexUtils.parseDouble(line, 44, 8));
}
},
LineParser::headerNext),
/** Parser for leap seconds. */
LEAP_SECONDS(line -> RinexLabels.LEAP_SECONDS.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
parseInfo.file.getHeader().setLeapSeconds(RinexUtils.parseInt(line, 0, 6));
if (parseInfo.file.getHeader().getFormatVersion() >= 3.0) {
parseInfo.file.getHeader().setLeapSecondsFuture(RinexUtils.parseInt(line, 6, 6));
parseInfo.file.getHeader().setLeapSecondsWeekNum(RinexUtils.parseInt(line, 12, 6));
parseInfo.file.getHeader().setLeapSecondsDayNum(RinexUtils.parseInt(line, 18, 6));
}
},
LineParser::headerNext),
/** Parser for number of satellites. */
NB_OF_SATELLITES(line -> RinexLabels.NB_OF_SATELLITES.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> parseInfo.file.getHeader().setNbSat(RinexUtils.parseInt(line, 0, 6)),
LineParser::headerNext),
/** Parser for PRN and number of observations . */
PRN_NB_OF_OBS(line -> RinexLabels.PRN_NB_OF_OBS.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
final String systemName = RinexUtils.parseString(line, 3, 1);
if (!systemName.isEmpty()) {
final SatelliteSystem system = SatelliteSystem.parseSatelliteSystem(systemName);
final int prn = RinexUtils.parseInt(line, 4, 2);
parseInfo.currentSat = new SatInSystem(system,
system == SatelliteSystem.SBAS ?
prn + 100 :
(system == SatelliteSystem.QZSS ? prn + 192 : prn));
parseInfo.nbTypes = 0;
}
final List<ObservationType> types = parseInfo.file.getHeader().getTypeObs().get(parseInfo.currentSat.getSystem());
final int firstIndex = 6;
final int increment = 6;
final int size = 6;
for (int i = firstIndex;
(i + size) <= RinexUtils.LABEL_INDEX && parseInfo.nbTypes < types.size();
i += increment) {
final String nb = RinexUtils.parseString(line, i, size);
if (!nb.isEmpty()) {
parseInfo.file.getHeader().setNbObsPerSatellite(parseInfo.currentSat, types.get(parseInfo.nbTypes),
RinexUtils.parseInt(line, i, size));
}
++parseInfo.nbTypes;
}
},
LineParser::headerNext),
/** Parser for the end of header. */
END(line -> RinexLabels.END.matches(RinexUtils.getLabel(line)),
(line, parseInfo) -> {
parseInfo.headerCompleted = true;
// get rinex format version
final double version = parseInfo.file.getHeader().getFormatVersion();
// check mandatory header fields
if (version < 3) {
if (parseInfo.file.getHeader().getMarkerName() == null ||
parseInfo.file.getHeader().getObserverName() == null ||
parseInfo.file.getHeader().getReceiverNumber() == null ||
parseInfo.file.getHeader().getAntennaNumber() == null ||
parseInfo.file.getHeader().getTFirstObs() == null ||
version < 2.20 && parseInfo.file.getHeader().getApproxPos() == null ||
version < 2.20 && Double.isNaN(parseInfo.file.getHeader().getAntennaHeight()) ||
parseInfo.file.getHeader().getTypeObs().isEmpty()) {
throw new OrekitException(OrekitMessages.INCOMPLETE_HEADER, parseInfo.name);
}
} else {
if (parseInfo.file.getHeader().getMarkerName() == null ||
parseInfo.file.getHeader().getObserverName() == null ||
parseInfo.file.getHeader().getReceiverNumber() == null ||
parseInfo.file.getHeader().getAntennaNumber() == null ||
Double.isNaN(parseInfo.file.getHeader().getAntennaHeight()) &&
parseInfo.file.getHeader().getAntennaReferencePoint() == null ||
parseInfo.file.getHeader().getTFirstObs() == null ||
parseInfo.file.getHeader().getTypeObs().isEmpty()) {
throw new OrekitException(OrekitMessages.INCOMPLETE_HEADER, parseInfo.name);
}
}
},
LineParser::headerEndNext),
/** Parser for Rinex 2 data list of satellites. */
RINEX_2_DATA_SAT_LIST(line -> true,
(line, parseInfo) -> {
for (int index = 32; parseInfo.satObs.size() < parseInfo.nbSatObs && index < 68; index += 3) {
// add one PRN to the list of observed satellites
final SatelliteSystem system = line.charAt(index) == ' ' ?
parseInfo.file.getHeader().getSatelliteSystem() :
SatelliteSystem.parseSatelliteSystem(RinexUtils.parseString(line, index, 1));
if (system != parseInfo.file.getHeader().getSatelliteSystem() &&
parseInfo.file.getHeader().getSatelliteSystem() != SatelliteSystem.MIXED) {
throw new OrekitException(OrekitMessages.INCONSISTENT_SATELLITE_SYSTEM,
parseInfo.lineNumber, parseInfo.name,
parseInfo.file.getHeader().getSatelliteSystem(),
system);
}
final int prn = RinexUtils.parseInt(line, index + 1, 2);
final SatInSystem satellite = new SatInSystem(system,
system == SatelliteSystem.SBAS ? prn + 100 : prn);
parseInfo.satObs.add(satellite);
// note that we *must* use parseInfo.file.getHeader().getSatelliteSystem() as it was used to set up parseInfo.mapTypeObs
// and it may be MIXED to be applied to all satellites systems
final int nbObservables = parseInfo.file.getHeader().getTypeObs().get(parseInfo.file.getHeader().getSatelliteSystem()).size();
final int nbLines = (nbObservables + MAX_OBS_PER_RINEX_2_LINE - 1) / MAX_OBS_PER_RINEX_2_LINE;
parseInfo.nextObsStartLineNumber += nbLines;
}
},
LineParser::first2),
/** Parser for Rinex 2 data first line. */
RINEX_2_DATA_FIRST(line -> true,
(line, parseInfo) -> {
// flag
parseInfo.eventFlag = RinexUtils.parseInt(line, 28, 1);
// number of sats
parseInfo.nbSatObs = RinexUtils.parseInt(line, 29, 3);
final int nbLinesSat = (parseInfo.nbSatObs + MAX_SAT_PER_RINEX_2_LINE - 1) / MAX_SAT_PER_RINEX_2_LINE;
if (parseInfo.eventFlag < 2) {
// regular observation
parseInfo.specialRecord = false;
parseInfo.cycleSlip = false;
final int nbSat = parseInfo.file.getHeader().getNbSat();
if (nbSat != -1 && parseInfo.nbSatObs > nbSat) {
// we check that the number of Sat in the observation is consistent
throw new OrekitException(OrekitMessages.INCONSISTENT_NUMBER_OF_SATS,
parseInfo.lineNumber, parseInfo.name,
parseInfo.nbSatObs, nbSat);
}
parseInfo.nextObsStartLineNumber = parseInfo.lineNumber + nbLinesSat;
// read the Receiver Clock offset, if present
parseInfo.rcvrClkOffset = RinexUtils.parseDouble(line, 68, 12);
if (Double.isNaN(parseInfo.rcvrClkOffset)) {
parseInfo.rcvrClkOffset = 0.0;
}
} else if (parseInfo.eventFlag < 6) {
// moving antenna / new site occupation / header information / external event
// here, number of sats means number of lines to skip
parseInfo.specialRecord = true;
parseInfo.cycleSlip = false;
parseInfo.nextObsStartLineNumber = parseInfo.lineNumber + parseInfo.nbSatObs + 1;
} else if (parseInfo.eventFlag == 6) {
// cycle slip, we will ignore it during observations parsing
parseInfo.specialRecord = false;
parseInfo.cycleSlip = true;
parseInfo.nextObsStartLineNumber = parseInfo.lineNumber + nbLinesSat;
} else {
// unknown event flag
throw new OrekitException(OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE,
parseInfo.lineNumber, parseInfo.name, line);
}
// parse the list of satellites observed
parseInfo.satObs.clear();
if (!parseInfo.specialRecord) {
// observations epoch
parseInfo.setTObs(new AbsoluteDate(RinexUtils.convert2DigitsYear(RinexUtils.parseInt(line, 1, 2)),
RinexUtils.parseInt(line, 4, 2),
RinexUtils.parseInt(line, 7, 2),
RinexUtils.parseInt(line, 10, 2),
RinexUtils.parseInt(line, 13, 2),
RinexUtils.parseDouble(line, 15, 11),
parseInfo.timeScale));
// satellites list
RINEX_2_DATA_SAT_LIST.parsingMethod.parse(line, parseInfo);
}
// prepare handling of observations for current epoch
parseInfo.indexObsSat = 0;
parseInfo.observations.clear();
},
LineParser::first2),
/** Parser for Rinex 2 special record. */
RINEX_2_IGNORED_SPECIAL_RECORD(line -> true,
(line, parseInfo) -> {
// nothing to do
},
LineParser::ignore2),
/** Parser for Rinex 2 observation line. */
RINEX_2_OBSERVATION(line -> true,
(line, parseInfo) -> {
final List<ObservationType> types = parseInfo.file.getHeader().getTypeObs().get(parseInfo.file.getHeader().getSatelliteSystem());
for (int index = 0;
parseInfo.observations.size() < types.size() && index < 80;
index += 16) {
final ObservationData observationData;
if (parseInfo.cycleSlip) {
// we are in a cycle slip data block (eventFlag = 6), we just ignore everything
observationData = null;
} else {
// this is a regular observation line
final ObservationType type = types.get(parseInfo.observations.size());
final double scaling = getScaling(parseInfo, type, parseInfo.currentSystem);
observationData = new ObservationData(type,
scaling * RinexUtils.parseDouble(line, index, 14),
RinexUtils.parseInt(line, index + 14, 1),
RinexUtils.parseInt(line, index + 15, 1));
}
parseInfo.observations.add(observationData);
}
if (parseInfo.observations.size() == types.size()) {
// we have finished handling observations/cycle slips for one satellite
if (!parseInfo.cycleSlip) {
parseInfo.file.addObservationDataSet(new ObservationDataSet(parseInfo.satObs.get(parseInfo.indexObsSat),
parseInfo.tObs,
parseInfo.eventFlag,
parseInfo.rcvrClkOffset,
new ArrayList<>(parseInfo.observations)));
}
parseInfo.indexObsSat++;
parseInfo.observations.clear();
}
},
LineParser::observation2),
/** Parser for Rinex 3 observation line. */
RINEX_3_OBSERVATION(line -> true,
(line, parseInfo) -> {
final SatelliteSystem system = SatelliteSystem.parseSatelliteSystem(RinexUtils.parseString(line, 0, 1));
final int prn = RinexUtils.parseInt(line, 1, 2);
final SatInSystem sat = new SatInSystem(system,
system == SatelliteSystem.SBAS ?
prn + 100 :
(system == SatelliteSystem.QZSS ? prn + 192 : prn));
final List<ObservationType> types = parseInfo.file.getHeader().getTypeObs().get(sat.getSystem());
for (int index = 3;
parseInfo.observations.size() < types.size();
index += 16) {
final ObservationData observationData;
if (parseInfo.specialRecord || parseInfo.cycleSlip) {
// we are in a special record (eventFlag < 6) or in a cycle slip data block (eventFlag = 6), we just ignore everything
observationData = null;
} else {
// this is a regular observation line
final ObservationType type = types.get(parseInfo.observations.size());
final double scaling = getScaling(parseInfo, type, sat.getSystem());
observationData = new ObservationData(type,
scaling * RinexUtils.parseDouble(line, index, 14),
RinexUtils.parseInt(line, index + 14, 1),
RinexUtils.parseInt(line, index + 15, 1));
}
parseInfo.observations.add(observationData);
}
if (!(parseInfo.specialRecord || parseInfo.cycleSlip)) {
parseInfo.file.addObservationDataSet(new ObservationDataSet(sat,
parseInfo.tObs,
parseInfo.eventFlag,
parseInfo.rcvrClkOffset,
new ArrayList<>(parseInfo.observations)));
}
parseInfo.observations.clear();
},
LineParser::observation3),
/** Parser for Rinex 3 data first line. */
RINEX_3_DATA_FIRST(line -> line.startsWith(">"),
(line, parseInfo) -> {
// flag
parseInfo.eventFlag = RinexUtils.parseInt(line, 31, 1);
// number of sats
parseInfo.nbSatObs = RinexUtils.parseInt(line, 32, 3);
if (parseInfo.eventFlag < 2) {
// regular observation
parseInfo.specialRecord = false;
parseInfo.cycleSlip = false;
final int nbSat = parseInfo.file.getHeader().getNbSat();
if (nbSat != -1 && parseInfo.nbSatObs > nbSat) {
// we check that the number of Sat in the observation is consistent
throw new OrekitException(OrekitMessages.INCONSISTENT_NUMBER_OF_SATS,
parseInfo.lineNumber, parseInfo.name,
parseInfo.nbSatObs, nbSat);
}
parseInfo.nextObsStartLineNumber = parseInfo.lineNumber + parseInfo.nbSatObs + 1;
// read the Receiver Clock offset, if present
parseInfo.rcvrClkOffset = RinexUtils.parseDouble(line, 41, 15);
if (Double.isNaN(parseInfo.rcvrClkOffset)) {
parseInfo.rcvrClkOffset = 0.0;
}
} else if (parseInfo.eventFlag < 6) {
// moving antenna / new site occupation / header information / external event
// here, number of sats means number of lines to skip
parseInfo.specialRecord = true;
parseInfo.cycleSlip = false;
parseInfo.nextObsStartLineNumber = parseInfo.lineNumber + parseInfo.nbSatObs + 1;
} else if (parseInfo.eventFlag == 6) {
// cycle slip, we will ignore it during observations parsing
parseInfo.specialRecord = false;
parseInfo.cycleSlip = true;
parseInfo.nextObsStartLineNumber = parseInfo.lineNumber + parseInfo.nbSatObs + 1;
} else {
// unknown event flag
throw new OrekitException(OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE,
parseInfo.lineNumber, parseInfo.name, line);
}
// parse the list of satellites observed
parseInfo.satObs.clear();
if (!parseInfo.specialRecord) {
// observations epoch
parseInfo.setTObs(new AbsoluteDate(RinexUtils.parseInt(line, 2, 4),
RinexUtils.parseInt(line, 7, 2),
RinexUtils.parseInt(line, 10, 2),
RinexUtils.parseInt(line, 13, 2),
RinexUtils.parseInt(line, 16, 2),
RinexUtils.parseDouble(line, 18, 11),
parseInfo.timeScale));
}
// prepare handling of observations for current epoch
parseInfo.observations.clear();
},
parseInfo -> Collections.singleton(RINEX_3_OBSERVATION));
/** Predicate for identifying lines that can be parsed. */
private final Predicate<String> canHandle;
/** Parsing method. */
private final ParsingMethod parsingMethod;
/** Provider for next line parsers. */
private final Function<ParseInfo, Iterable<LineParser>> allowedNextProvider;
/** Simple constructor.
* @param canHandle predicate for identifying lines that can be parsed
* @param parsingMethod parsing method
* @param allowedNextProvider supplier for allowed parsers for next line
*/
LineParser(final Predicate<String> canHandle, final ParsingMethod parsingMethod,
final Function<ParseInfo, Iterable<LineParser>> allowedNextProvider) {
this.canHandle = canHandle;
this.parsingMethod = parsingMethod;
this.allowedNextProvider = allowedNextProvider;
}
/** Get the allowed parsers for next lines while parsing comments.
* @param parseInfo holder for transient data
* @return allowed parsers for next line
*/
private static Iterable<LineParser> commentNext(final ParseInfo parseInfo) {
return parseInfo.headerCompleted ? headerEndNext(parseInfo) : headerNext(parseInfo);
}
/** Get the allowed parsers for next lines while parsing Rinex header.
* @param parseInfo holder for transient data
* @return allowed parsers for next line
*/
private static Iterable<LineParser> headerNext(final ParseInfo parseInfo) {
if (parseInfo.file.getHeader().getFormatVersion() < 3) {
// Rinex 2.x header entries
return Arrays.asList(PROGRAM, COMMENT, MARKER_NAME, MARKER_NUMBER, MARKER_TYPE, OBSERVER_AGENCY,
REC_NB_TYPE_VERS, ANT_NB_TYPE, APPROX_POSITION_XYZ, ANTENNA_DELTA_H_E_N,
ANTENNA_DELTA_X_Y_Z, ANTENNA_B_SIGHT_XYZ, WAVELENGTH_FACT_L1_2, OBS_SCALE_FACTOR,
CENTER_OF_MASS_XYZ, SYS_NB_TYPES_OF_OBSERV, INTERVAL, TIME_OF_FIRST_OBS, TIME_OF_LAST_OBS,
RCV_CLOCK_OFFS_APPL, LEAP_SECONDS, NB_OF_SATELLITES, PRN_NB_OF_OBS, END);
} else if (parseInfo.file.getHeader().getFormatVersion() < 4) {
// Rinex 3.x header entries
return Arrays.asList(PROGRAM, COMMENT, MARKER_NAME, MARKER_NUMBER, MARKER_TYPE, OBSERVER_AGENCY,
REC_NB_TYPE_VERS, ANT_NB_TYPE, APPROX_POSITION_XYZ, ANTENNA_DELTA_H_E_N,
ANTENNA_DELTA_X_Y_Z, ANTENNA_PHASE_CENTER, ANTENNA_B_SIGHT_XYZ, ANTENNA_ZERODIR_AZI,
ANTENNA_ZERODIR_XYZ, CENTER_OF_MASS_XYZ, SYS_NB_TYPES_OF_OBSERV, SIGNAL_STRENGTH_UNIT,
INTERVAL, TIME_OF_FIRST_OBS, TIME_OF_LAST_OBS, RCV_CLOCK_OFFS_APPL,
SYS_DCBS_APPLIED, SYS_PCVS_APPLIED, SYS_SCALE_FACTOR, SYS_PHASE_SHIFT,
GLONASS_SLOT_FRQ_NB, GLONASS_COD_PHS_BIS, LEAP_SECONDS, NB_OF_SATELLITES,
PRN_NB_OF_OBS, END);
} else {
// Rinex 4.x header entries
return Arrays.asList(PROGRAM, COMMENT, MARKER_NAME, MARKER_NUMBER, MARKER_TYPE, OBSERVER_AGENCY,
REC_NB_TYPE_VERS, ANT_NB_TYPE, APPROX_POSITION_XYZ, ANTENNA_DELTA_H_E_N,
ANTENNA_DELTA_X_Y_Z, ANTENNA_PHASE_CENTER, ANTENNA_B_SIGHT_XYZ, ANTENNA_ZERODIR_AZI,
ANTENNA_ZERODIR_XYZ, CENTER_OF_MASS_XYZ, DOI, LICENSE, STATION_INFORMATION,
SYS_NB_TYPES_OF_OBSERV, SIGNAL_STRENGTH_UNIT, INTERVAL, TIME_OF_FIRST_OBS, TIME_OF_LAST_OBS,
RCV_CLOCK_OFFS_APPL, SYS_DCBS_APPLIED, SYS_PCVS_APPLIED, SYS_SCALE_FACTOR, SYS_PHASE_SHIFT,
GLONASS_SLOT_FRQ_NB, GLONASS_COD_PHS_BIS, LEAP_SECONDS, NB_OF_SATELLITES,
PRN_NB_OF_OBS, END);
}
}
/** Get the allowed parsers for next lines while parsing header end.
* @param parseInfo holder for transient data
* @return allowed parsers for next line
*/
private static Iterable<LineParser> headerEndNext(final ParseInfo parseInfo) {
return Collections.singleton(parseInfo.file.getHeader().getFormatVersion() < 3 ?
RINEX_2_DATA_FIRST : RINEX_3_DATA_FIRST);
}
/** Get the allowed parsers for next lines while parsing types of observations.
* @param parseInfo holder for transient data
* @return allowed parsers for next line
*/
private static Iterable<LineParser> headerNbTypesObs(final ParseInfo parseInfo) {
if (parseInfo.typesObs.size() < parseInfo.nbTypes) {
return Arrays.asList(COMMENT, SYS_NB_TYPES_OF_OBSERV);
} else {
return headerNext(parseInfo);
}
}
/** Get the allowed parsers for next lines while parsing phase shifts.
* @param parseInfo holder for transient data
* @return allowed parsers for next line
*/
private static Iterable<LineParser> headerPhaseShift(final ParseInfo parseInfo) {
if (parseInfo.satPhaseShift.size() < parseInfo.phaseShiftNbSat) {
return Arrays.asList(COMMENT, SYS_PHASE_SHIFT);
} else {
return headerNext(parseInfo);
}
}
/** Get the allowed parsers for next lines while parsing Rinex 2 observations first lines.
* @param parseInfo holder for transient data
* @return allowed parsers for next line
*/
private static Iterable<LineParser> first2(final ParseInfo parseInfo) {
if (parseInfo.specialRecord) {
return Collections.singleton(RINEX_2_IGNORED_SPECIAL_RECORD);
} else if (parseInfo.satObs.size() < parseInfo.nbSatObs) {
return Collections.singleton(RINEX_2_DATA_SAT_LIST);
} else {
return Collections.singleton(RINEX_2_OBSERVATION);
}
}
/** Get the allowed parsers for next lines while parsing Rinex 2 ignored special records.
* @param parseInfo holder for transient data
* @return allowed parsers for next line
*/
private static Iterable<LineParser> ignore2(final ParseInfo parseInfo) {
if (parseInfo.lineNumber < parseInfo.nextObsStartLineNumber) {
return Collections.singleton(RINEX_2_IGNORED_SPECIAL_RECORD);
} else {
return Arrays.asList(COMMENT, RINEX_2_DATA_FIRST);
}
}
/** Get the allowed parsers for next lines while parsing Rinex 2 observations per se.
* @param parseInfo holder for transient data
* @return allowed parsers for next line
*/
private static Iterable<LineParser> observation2(final ParseInfo parseInfo) {
if (parseInfo.lineNumber < parseInfo.nextObsStartLineNumber) {
return Collections.singleton(RINEX_2_OBSERVATION);
} else {
return Arrays.asList(COMMENT, RINEX_2_DATA_FIRST);
}
}
/** Get the allowed parsers for next lines while parsing Rinex 3 observations.
* @param parseInfo holder for transient data
* @return allowed parsers for next line
*/
private static Iterable<LineParser> observation3(final ParseInfo parseInfo) {
if (parseInfo.lineNumber < parseInfo.nextObsStartLineNumber) {
return Collections.singleton(RINEX_3_OBSERVATION);
} else {
return Arrays.asList(COMMENT, RINEX_3_DATA_FIRST);
}
}
/** Get the scaling factor for an observation.
* @param parseInfo holder for transient data
* @param type type of observation
* @param system satellite system for the observation
* @return scaling factor
*/
private static double getScaling(final ParseInfo parseInfo, final ObservationType type,
final SatelliteSystem system) {
for (final ScaleFactorCorrection scaleFactorCorrection :
parseInfo.file.getHeader().getScaleFactorCorrections(system)) {
// check if the next Observation Type to read needs to be scaled
if (scaleFactorCorrection.getTypesObsScaled().contains(type)) {
return 1.0 / scaleFactorCorrection.getCorrection();
}
}
// no scaling
return 1.0;
}
}
/** Parsing method. */
@FunctionalInterface
private interface ParsingMethod {
/** Parse a line.
* @param line line to parse
* @param parseInfo holder for transient data
*/
void parse(String line, ParseInfo parseInfo);
}
}