SensorPixelCrossing.java
/* Copyright 2013-2017 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.rugged.linesensor;
import org.hipparchus.analysis.UnivariateFunction;
import org.hipparchus.analysis.solvers.BracketingNthOrderBrentSolver;
import org.hipparchus.analysis.solvers.UnivariateSolver;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.rugged.errors.RuggedException;
import org.orekit.rugged.errors.RuggedExceptionWrapper;
import org.orekit.time.AbsoluteDate;
/** Class devoted to locate where ground point crosses a sensor line.
* <p>
* This class is used in the first stage of inverse location.
* </p>
* @author Luc Maisonobe
*/
public class SensorPixelCrossing {
/** Margin before and after end pixels, in order to avoid search failures near boundaries. */
private static final double MARGIN = 10.0;
/** Line sensor. */
private final LineSensor sensor;
/** Cross direction in spacecraft frame. */
private final Vector3D cross;
/** Maximum number of evaluations. */
private final int maxEval;
/** Accuracy to use for finding crossing line number. */
private final double accuracy;
/** Simple constructor.
* @param sensor sensor to consider
* @param meanNormal mean plane normal of the line sensor
* @param targetDirection target direction in spacecraft frame
* @param maxEval maximum number of evaluations
* @param accuracy accuracy to use for finding crossing line number
*/
public SensorPixelCrossing(final LineSensor sensor, final Vector3D meanNormal,
final Vector3D targetDirection,
final int maxEval, final double accuracy) {
this.sensor = sensor;
this.cross = Vector3D.crossProduct(meanNormal, targetDirection).normalize();
this.maxEval = maxEval;
this.accuracy = accuracy;
}
/** Locate pixel along sensor line.
* @param date current date
* @return pixel location ({@code Double.NaN} if the first and last
* pixels of the line do not bracket a location)
* @exception RuggedException if the maximum number of evaluations is exceeded
*/
public double locatePixel(final AbsoluteDate date) throws RuggedException {
try {
// set up function evaluating to 0.0 where target matches pixel
final UnivariateFunction f = new UnivariateFunction() {
/** {@inheritDoc} */
@Override
public double value(final double x) throws RuggedExceptionWrapper {
try {
return Vector3D.angle(cross, getLOS(date, x)) - 0.5 * FastMath.PI;
} catch (RuggedException re) {
throw new RuggedExceptionWrapper(re);
}
}
};
// find the root
final UnivariateSolver solver =
new BracketingNthOrderBrentSolver(0.0, accuracy, 5);
return solver.solve(maxEval, f, -MARGIN, sensor.getNbPixels() - 1 + MARGIN);
} catch (MathIllegalArgumentException nbe) {
// there are no solutions in the search interval
return Double.NaN;
} catch (RuggedExceptionWrapper rew) {
throw rew.getException();
}
}
/** Interpolate sensor pixels at some pixel index.
* @param date current date
* @param x pixel index
* @return interpolated direction for specified index
* @exception RuggedException if date cannot be handled
*/
private Vector3D getLOS(final AbsoluteDate date, final double x)
throws RuggedException {
// find surrounding pixels
final int iInf = FastMath.max(0, FastMath.min(sensor.getNbPixels() - 2, (int) FastMath.floor(x)));
final int iSup = iInf + 1;
// interpolate
return new Vector3D(iSup - x, sensor.getLOS(date, iInf),
x - iInf, sensor.getLOS(date, iSup)).normalize();
}
}