Uses of Class
org.orekit.estimation.sequential.MeasurementDecorator
-
Packages that use MeasurementDecorator Package Description org.orekit.estimation.sequential The sequential package provides an implementation of a Kalman Filter engine to perform an orbit determination. -
-
Uses of MeasurementDecorator in org.orekit.estimation.sequential
Methods in org.orekit.estimation.sequential that return MeasurementDecorator Modifier and Type Method Description static MeasurementDecorator
KalmanEstimatorUtil. decorate(ObservedMeasurement<?> observedMeasurement, AbsoluteDate referenceDate)
Decorate an observed measurement.static MeasurementDecorator
KalmanEstimatorUtil. decorateUnscented(ObservedMeasurement<?> observedMeasurement, AbsoluteDate referenceDate)
Decorate an observed measurement for an Unscented Kalman Filter.Methods in org.orekit.estimation.sequential with parameters of type MeasurementDecorator Modifier and Type Method Description NonLinearEvolution
KalmanModel. getEvolution(double previousTime, RealVector previousState, MeasurementDecorator measurement)
NonLinearEvolution
SemiAnalyticalKalmanModel. getEvolution(double previousTime, RealVector previousState, MeasurementDecorator measurement)
UnscentedEvolution
SemiAnalyticalUnscentedKalmanModel. getEvolution(double previousTime, RealVector[] sigmaPoints, MeasurementDecorator measurement)
UnscentedEvolution
UnscentedKalmanModel. getEvolution(double previousTime, RealVector[] sigmaPoints, MeasurementDecorator measurement)
RealVector
KalmanModel. getInnovation(MeasurementDecorator measurement, NonLinearEvolution evolution, RealMatrix innovationCovarianceMatrix)
RealVector
SemiAnalyticalKalmanModel. getInnovation(MeasurementDecorator measurement, NonLinearEvolution evolution, RealMatrix innovationCovarianceMatrix)
RealVector
SemiAnalyticalUnscentedKalmanModel. getInnovation(MeasurementDecorator measurement, RealVector predictedMeas, RealVector predictedState, RealMatrix innovationCovarianceMatrix)
RealVector
UnscentedKalmanModel. getInnovation(MeasurementDecorator measurement, RealVector predictedMeas, RealVector predictedState, RealMatrix innovationCovarianceMatrix)
RealVector[]
SemiAnalyticalUnscentedKalmanModel. getPredictedMeasurements(RealVector[] predictedSigmaPoints, MeasurementDecorator measurement)
RealVector[]
UnscentedKalmanModel. getPredictedMeasurements(RealVector[] predictedSigmaPoints, MeasurementDecorator measurement)
Method parameters in org.orekit.estimation.sequential with type arguments of type MeasurementDecorator Modifier and Type Method Description DSSTPropagator
SemiAnalyticalKalmanModel. processMeasurements(List<ObservedMeasurement<?>> observedMeasurements, ExtendedKalmanFilter<MeasurementDecorator> filter)
Process a single measurement.DSSTPropagator
SemiAnalyticalUnscentedKalmanModel. processMeasurements(List<ObservedMeasurement<?>> observedMeasurements, UnscentedKalmanFilter<MeasurementDecorator> filter)
Process measurements.Constructor parameters in org.orekit.estimation.sequential with type arguments of type MeasurementDecorator Constructor Description SemiAnalyticalMeasurementHandler(SemiAnalyticalProcess model, KalmanFilter<MeasurementDecorator> filter, List<ObservedMeasurement<?>> observedMeasurements, AbsoluteDate referenceDate)
Simple constructor.SemiAnalyticalMeasurementHandler(SemiAnalyticalProcess model, KalmanFilter<MeasurementDecorator> filter, List<ObservedMeasurement<?>> observedMeasurements, AbsoluteDate referenceDate, boolean isUnscented)
Simple constructor.
-