NadirPointing.java

/* Copyright 2002-2024 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.attitudes;

import java.util.ArrayList;
import java.util.List;

import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative2;
import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative2Field;
import org.hipparchus.analysis.differentiation.UnivariateDerivative2;
import org.hipparchus.analysis.differentiation.UnivariateDerivative2Field;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.bodies.BodyShape;
import org.orekit.bodies.FieldGeodeticPoint;
import org.orekit.bodies.GeodeticPoint;
import org.orekit.frames.FieldStaticTransform;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.StaticTransform;
import org.orekit.frames.Transform;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.time.FieldTimeInterpolator;
import org.orekit.time.TimeInterpolator;
import org.orekit.utils.CartesianDerivativesFilter;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.PVCoordinatesProvider;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.TimeStampedFieldPVCoordinates;
import org.orekit.utils.TimeStampedFieldPVCoordinatesHermiteInterpolator;
import org.orekit.utils.TimeStampedPVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinatesHermiteInterpolator;

/**
 * This class handles nadir pointing attitude provider.

 * <p>
 * This class represents the attitude provider where the satellite z axis is
 * pointing to the vertical of the ground point under satellite.</p>
 * <p>
 * The object <code>NadirPointing</code> is guaranteed to be immutable.
 * </p>
 * @see     GroundPointing
 * @author V&eacute;ronique Pommier-Maurussane
 */
public class NadirPointing extends GroundPointing {

    /** Body shape.  */
    private final BodyShape shape;

    /** Creates new instance.
     * @param inertialFrame frame in which orbital velocities are computed
     * @param shape Body shape
     * @since 7.1
     */
    public NadirPointing(final Frame inertialFrame, final BodyShape shape) {
        // Call constructor of superclass
        super(inertialFrame, shape.getBodyFrame());
        this.shape = shape;
    }

    /** {@inheritDoc} */
    @Override
    public TimeStampedPVCoordinates getTargetPV(final PVCoordinatesProvider pvProv,
                                                final AbsoluteDate date, final Frame frame) {

        final TimeStampedPVCoordinates pvCoordinatesInRef = pvProv.getPVCoordinates(date, frame);
        if (pvCoordinatesInRef.getAcceleration().equals(Vector3D.ZERO)) {
            // let us assume that there is no proper acceleration available, so need to use interpolation for derivatives
            return getTargetPVViaInterpolation(pvProv, date, frame);

        } else {  // use automatic differentiation
            // build time dependent transform
            final UnivariateDerivative2Field ud2Field = UnivariateDerivative2Field.getInstance();
            final UnivariateDerivative2 dt = new UnivariateDerivative2(0., 1., 0.);
            final FieldAbsoluteDate<UnivariateDerivative2> ud2Date = new FieldAbsoluteDate<>(ud2Field, date).shiftedBy(dt);
            final FieldStaticTransform<UnivariateDerivative2> refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), ud2Date);

            final FieldVector3D<UnivariateDerivative2> positionInRefFrame = pvCoordinatesInRef.toUnivariateDerivative2Vector();
            final FieldVector3D<UnivariateDerivative2> positionInBodyFrame = refToBody.transformPosition(positionInRefFrame);

            // satellite position in geodetic coordinates
            final FieldGeodeticPoint<UnivariateDerivative2> gpSat = shape.transform(positionInBodyFrame, getBodyFrame(), ud2Date);

            // nadir position in geodetic coordinates
            final FieldGeodeticPoint<UnivariateDerivative2> gpNadir = new FieldGeodeticPoint<>(gpSat.getLatitude(),
                gpSat.getLongitude(), ud2Field.getZero());

            // nadir point position in body frame
            final FieldVector3D<UnivariateDerivative2> positionNadirInBodyFrame = shape.transform(gpNadir);

            // nadir point position in reference frame
            final FieldStaticTransform<UnivariateDerivative2> bodyToRef = refToBody.getInverse();
            final FieldVector3D<UnivariateDerivative2> positionNadirInRefFrame = bodyToRef.transformPosition(positionNadirInBodyFrame);

            // put derivatives into proper object
            final Vector3D velocity = new Vector3D(positionNadirInRefFrame.getX().getFirstDerivative(),
                    positionNadirInRefFrame.getY().getFirstDerivative(), positionNadirInRefFrame.getZ().getFirstDerivative());
            final Vector3D acceleration = new Vector3D(positionNadirInRefFrame.getX().getSecondDerivative(),
                positionNadirInRefFrame.getY().getSecondDerivative(), positionNadirInRefFrame.getZ().getSecondDerivative());
            return new TimeStampedPVCoordinates(date, positionNadirInRefFrame.toVector3D(), velocity, acceleration);
        }
    }

    /**
     * Compute target position-velocity-acceleration vector via interpolation.
     * @param pvProv PV provider
     * @param date date
     * @param frame frame
     * @return target position-velocity-acceleration
     */
    public TimeStampedPVCoordinates getTargetPVViaInterpolation(final PVCoordinatesProvider pvProv,
                                                                final AbsoluteDate date, final Frame frame) {

        // transform from specified reference frame to body frame
        final Transform refToBody = frame.getTransformTo(shape.getBodyFrame(), date);

        // sample intersection points in current date neighborhood
        final double h  = 0.01;
        final List<TimeStampedPVCoordinates> sample = new ArrayList<>();
        sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-2 * h), frame), refToBody.staticShiftedBy(-2 * h)));
        sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-h),     frame), refToBody.staticShiftedBy(-h)));
        sample.add(nadirRef(pvProv.getPVCoordinates(date,                   frame), refToBody));
        sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+h),     frame), refToBody.staticShiftedBy(+h)));
        sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+2 * h), frame), refToBody.staticShiftedBy(+2 * h)));

        // create interpolator
        final TimeInterpolator<TimeStampedPVCoordinates> interpolator =
                new TimeStampedPVCoordinatesHermiteInterpolator(sample.size(), CartesianDerivativesFilter.USE_P);

        // use interpolation to compute properly the time-derivatives
        return interpolator.interpolate(date, sample);

    }

    /** {@inheritDoc} */
    @Override
    protected Vector3D getTargetPosition(final PVCoordinatesProvider pvProv, final AbsoluteDate date, final Frame frame) {

        // transform from specified reference frame to body frame
        final Vector3D position = pvProv.getPosition(date, frame);
        final PVCoordinates pVWithoutDerivatives = new PVCoordinates(position);
        final StaticTransform refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), date);

        return nadirRef(new TimeStampedPVCoordinates(date, pVWithoutDerivatives), refToBody).getPosition();
    }

    /** {@inheritDoc} */
    @Override
    public <T extends CalculusFieldElement<T>> TimeStampedFieldPVCoordinates<T> getTargetPV(final FieldPVCoordinatesProvider<T> pvProv,
                                                                                            final FieldAbsoluteDate<T> date,
                                                                                            final Frame frame) {

        final TimeStampedFieldPVCoordinates<T> pvCoordinatesInRef = pvProv.getPVCoordinates(date, frame);
        final Field<T> field = date.getField();
        if (pvCoordinatesInRef.getAcceleration().equals(FieldVector3D.getZero(field))) {
            // let us assume that there is no proper acceleration available, so need to use interpolation for derivatives
            return getTargetPVViaInterpolation(pvProv, date, frame);

        } else {  // use automatic differentiation
            // build time dependent transform
            final FieldUnivariateDerivative2Field<T> ud2Field = FieldUnivariateDerivative2Field.getUnivariateDerivative2Field(field);
            final FieldAbsoluteDate<FieldUnivariateDerivative2<T>> ud2Date = date.toFUD2Field();
            final FieldStaticTransform<FieldUnivariateDerivative2<T>> refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), ud2Date);

            final FieldVector3D<FieldUnivariateDerivative2<T>> positionInRefFrame = pvCoordinatesInRef.toUnivariateDerivative2Vector();
            final FieldVector3D<FieldUnivariateDerivative2<T>> positionInBodyFrame = refToBody.transformPosition(positionInRefFrame);

            // satellite position in geodetic coordinates
            final FieldGeodeticPoint<FieldUnivariateDerivative2<T>> gpSat = shape.transform(positionInBodyFrame, getBodyFrame(), ud2Date);

            // nadir position in geodetic coordinates
            final FieldGeodeticPoint<FieldUnivariateDerivative2<T>> gpNadir = new FieldGeodeticPoint<>(gpSat.getLatitude(),
                    gpSat.getLongitude(), ud2Field.getZero());

            // nadir point position in body frame
            final FieldVector3D<FieldUnivariateDerivative2<T>> positionNadirInBodyFrame = shape.transform(gpNadir);

            // nadir point position in reference frame
            final FieldStaticTransform<FieldUnivariateDerivative2<T>> bodyToRef = refToBody.getInverse();
            final FieldVector3D<FieldUnivariateDerivative2<T>> positionNadirInRefFrame = bodyToRef.transformPosition(positionNadirInBodyFrame);

            // put derivatives into proper object
            final FieldVector3D<T> position = new FieldVector3D<>(positionNadirInRefFrame.getX().getValue(),
                    positionNadirInRefFrame.getY().getValue(), positionNadirInRefFrame.getZ().getValue());
            final FieldVector3D<T> velocity = new FieldVector3D<>(positionNadirInRefFrame.getX().getFirstDerivative(),
                    positionNadirInRefFrame.getY().getFirstDerivative(), positionNadirInRefFrame.getZ().getFirstDerivative());
            final FieldVector3D<T> acceleration = new FieldVector3D<>(positionNadirInRefFrame.getX().getSecondDerivative(),
                    positionNadirInRefFrame.getY().getSecondDerivative(), positionNadirInRefFrame.getZ().getSecondDerivative());
            return new TimeStampedFieldPVCoordinates<>(date, position, velocity, acceleration);
        }

    }

    /**
     * Compute target position-velocity-acceleration vector via interpolation (Field version).
     * @param pvProv PV provider
     * @param date date
     * @param frame frame
     * @param <T> field type
     * @return target position-velocity-acceleration
     */
    public <T extends CalculusFieldElement<T>> TimeStampedFieldPVCoordinates<T> getTargetPVViaInterpolation(final FieldPVCoordinatesProvider<T> pvProv,
                                                                                                            final FieldAbsoluteDate<T> date, final Frame frame) {

        // zero
        final T zero = date.getField().getZero();

        // transform from specified reference frame to body frame
        final FieldTransform<T> refToBody = frame.getTransformTo(shape.getBodyFrame(), date);

        // sample intersection points in current date neighborhood
        final double h  = 0.01;
        final List<TimeStampedFieldPVCoordinates<T>> sample = new ArrayList<>();
        sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-2 * h), frame), refToBody.staticShiftedBy(zero.newInstance(-2 * h))));
        sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-h),     frame), refToBody.staticShiftedBy(zero.newInstance(-h))));
        sample.add(nadirRef(pvProv.getPVCoordinates(date,                   frame), refToBody));
        sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+h),     frame), refToBody.staticShiftedBy(zero.newInstance(+h))));
        sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+2 * h), frame), refToBody.staticShiftedBy(zero.newInstance(+2 * h))));

        // create interpolator
        final FieldTimeInterpolator<TimeStampedFieldPVCoordinates<T>, T> interpolator =
                new TimeStampedFieldPVCoordinatesHermiteInterpolator<>(sample.size(), CartesianDerivativesFilter.USE_P);

        // use interpolation to compute properly the time-derivatives
        return interpolator.interpolate(date, sample);

    }

    /** {@inheritDoc} */
    @Override
    protected <T extends CalculusFieldElement<T>> FieldVector3D<T> getTargetPosition(final FieldPVCoordinatesProvider<T> pvProv,
                                                                                     final FieldAbsoluteDate<T> date,
                                                                                     final Frame frame) {

        // transform from specified reference frame to body frame
        final FieldVector3D<T> position = pvProv.getPosition(date, frame);
        final FieldPVCoordinates<T> pVWithoutDerivatives = new FieldPVCoordinates<>(position, FieldVector3D.getZero(date.getField()));
        final FieldStaticTransform<T> refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), date);

        return nadirRef(new TimeStampedFieldPVCoordinates<T>(date, pVWithoutDerivatives), refToBody).getPosition();

    }

    /** Compute ground point in nadir direction, in reference frame.
     * @param scRef spacecraft coordinates in reference frame
     * @param refToBody transform from reference frame to body frame
     * @return intersection point in body frame (only the position is set!)
     */
    private TimeStampedPVCoordinates nadirRef(final TimeStampedPVCoordinates scRef,
                                              final StaticTransform refToBody) {

        final Vector3D satInBodyFrame = refToBody.transformPosition(scRef.getPosition());

        // satellite position in geodetic coordinates
        final GeodeticPoint gpSat = shape.transform(satInBodyFrame, getBodyFrame(), scRef.getDate());

        // nadir position in geodetic coordinates
        final GeodeticPoint gpNadir = new GeodeticPoint(gpSat.getLatitude(), gpSat.getLongitude(), 0.0);

        // nadir point position in body frame
        final Vector3D pNadirBody = shape.transform(gpNadir);

        // nadir point position in reference frame
        final Vector3D pNadirRef = refToBody.getInverse().transformPosition(pNadirBody);

        return new TimeStampedPVCoordinates(scRef.getDate(), pNadirRef, Vector3D.ZERO, Vector3D.ZERO);

    }

    /** Compute ground point in nadir direction, in reference frame.
     * @param scRef spacecraft coordinates in reference frame
     * @param refToBody transform from reference frame to body frame
     * @param <T> type of the field elements
     * @return intersection point in body frame (only the position is set!)
     * @since 9.0
     */
    private <T extends CalculusFieldElement<T>> TimeStampedFieldPVCoordinates<T> nadirRef(final TimeStampedFieldPVCoordinates<T> scRef,
                                                                                          final FieldStaticTransform<T> refToBody) {

        final FieldVector3D<T> satInBodyFrame = refToBody.transformPosition(scRef.getPosition());

        // satellite position in geodetic coordinates
        final FieldGeodeticPoint<T> gpSat = shape.transform(satInBodyFrame, getBodyFrame(), scRef.getDate());

        // nadir position in geodetic coordinates
        final FieldGeodeticPoint<T> gpNadir = new FieldGeodeticPoint<>(gpSat.getLatitude(), gpSat.getLongitude(),
                                                                       gpSat.getAltitude().getField().getZero());

        // nadir point position in body frame
        final FieldVector3D<T> pNadirBody = shape.transform(gpNadir);

        // nadir point position in reference frame
        final FieldVector3D<T> pNadirRef = refToBody.getInverse().transformPosition(pNadirBody);

        final FieldVector3D<T> zero = FieldVector3D.getZero(gpSat.getAltitude().getField());
        return new TimeStampedFieldPVCoordinates<>(scRef.getDate(), pNadirRef, zero, zero);

    }

}