GPSBlockIIA.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.gnss.attitude;
import org.hipparchus.Field;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.util.FastMath;
import org.orekit.frames.Frame;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.ExtendedPVCoordinatesProvider;
import org.orekit.utils.TimeStampedAngularCoordinates;
import org.orekit.utils.TimeStampedFieldAngularCoordinates;
/**
* Attitude providers for GPS block IIA navigation satellites.
* <p>
* This class is based on the May 2017 version of J. Kouba eclips.f
* subroutine available at <a href="http://acc.igs.org/orbits">IGS Analysis
* Center Coordinator site</a>. The eclips.f code itself is not used ; its
* hard-coded data are used and its low level models are used, but the
* structure of the code and the API have been completely rewritten.
* </p>
* @author J. Kouba original fortran routine
* @author Luc Maisonobe Java translation
* @since 9.2
*/
public class GPSBlockIIA extends AbstractGNSSAttitudeProvider {
/** Default yaw bias (rad). */
public static final double DEFAULT_YAW_BIAS = FastMath.toRadians(0.5);
/** Satellite-Sun angle limit for a midnight turn maneuver. */
private static final double NIGHT_TURN_LIMIT = FastMath.toRadians(180.0 - 13.25);
/** Margin on turn end. */
private static final double END_MARGIN = 1800.0;
/** Default yaw rates for all spacecrafts in radians per seconds (indexed by prnNumber, hence entry 0 is unused). */
private static final double[] DEFAULT_YAW_RATES = new double[] {
Double.NaN, // unused entry 0
FastMath.toRadians(0.1211), FastMath.toRadians(0.1339), FastMath.toRadians(0.1230), FastMath.toRadians(0.1233),
FastMath.toRadians(0.1180), FastMath.toRadians(0.1266), FastMath.toRadians(0.1269), FastMath.toRadians(0.1033),
FastMath.toRadians(0.1278), FastMath.toRadians(0.0978), FastMath.toRadians(0.2000), FastMath.toRadians(0.1990),
FastMath.toRadians(0.2000), FastMath.toRadians(0.0815), FastMath.toRadians(0.1303), FastMath.toRadians(0.0838),
FastMath.toRadians(0.1401), FastMath.toRadians(0.1069), FastMath.toRadians(0.0980), FastMath.toRadians(0.1030),
FastMath.toRadians(0.1366), FastMath.toRadians(0.1025), FastMath.toRadians(0.1140), FastMath.toRadians(0.1089),
FastMath.toRadians(0.1001), FastMath.toRadians(0.1227), FastMath.toRadians(0.1194), FastMath.toRadians(0.1260),
FastMath.toRadians(0.1228), FastMath.toRadians(0.1165), FastMath.toRadians(0.0969), FastMath.toRadians(0.1140)
};
/** Yaw rate for current spacecraft. */
private final double yawRate;
/** Yaw bias. */
private final double yawBias;
/** Simple constructor.
* @param yawRate yaw rate to use in radians per seconds (typically {@link #getDefaultYawRate(int) GPSBlockIIA.getDefaultYawRate(prnNumber)})
* @param yawBias yaw bias to use (rad) (typicall {@link #DEFAULT_YAW_BIAS})
* @param validityStart start of validity for this provider
* @param validityEnd end of validity for this provider
* @param sun provider for Sun position
* @param inertialFrame inertial frame where velocity are computed
* @since 9.3
*/
public GPSBlockIIA(final double yawRate, final double yawBias,
final AbsoluteDate validityStart, final AbsoluteDate validityEnd,
final ExtendedPVCoordinatesProvider sun, final Frame inertialFrame) {
super(validityStart, validityEnd, sun, inertialFrame);
this.yawRate = yawRate;
this.yawBias = yawBias;
}
/** Get the default yaw rate for a satellite.
* @param prnNumber satellite PRN
* @return default yaw rate for the specified satellite
* @since 10.0
*/
public static double getDefaultYawRate(final int prnNumber) {
return DEFAULT_YAW_RATES[prnNumber];
}
/** {@inheritDoc} */
@Override
protected TimeStampedAngularCoordinates correctedYaw(final GNSSAttitudeContext context) {
// noon beta angle limit from yaw rate
final double aNoon = FastMath.atan(context.getMuRate() / yawRate);
final double aNight = NIGHT_TURN_LIMIT;
final double cNoon = FastMath.cos(aNoon);
final double cNight = FastMath.cos(aNight);
if (context.setUpTurnRegion(cNight, cNoon)) {
final double absBeta = FastMath.abs(context.beta(context.getDate()));
context.setHalfSpan(context.inSunSide() ?
absBeta * FastMath.sqrt(aNoon / absBeta - 1.0) :
context.inOrbitPlaneAbsoluteAngle(aNight - FastMath.PI),
END_MARGIN);
if (context.inTurnTimeRange()) {
// we need to ensure beta sign does not change during the turn
final double beta = context.getSecuredBeta();
final double phiStart = context.getYawStart(beta);
final double dtStart = context.timeSinceTurnStart();
final double linearPhi;
final double phiDot;
if (context.inSunSide()) {
// noon turn
if (beta > 0 && beta < yawBias) {
// noon turn problem for small positive beta in block IIA
// rotation is in the wrong direction for these spacecrafts
phiDot = FastMath.copySign(yawRate, beta);
linearPhi = phiStart + phiDot * dtStart;
} else {
// regular noon turn
phiDot = -FastMath.copySign(yawRate, beta);
linearPhi = phiStart + phiDot * dtStart;
}
} else {
// midnight turn
phiDot = yawRate;
linearPhi = phiStart + phiDot * dtStart;
}
if (context.linearModelStillActive(linearPhi, phiDot)) {
// we are still in the linear model phase
return context.turnCorrectedAttitude(linearPhi, phiDot);
}
}
}
// in nominal yaw mode
return context.nominalYaw(context.getDate());
}
/** {@inheritDoc} */
@Override
protected <T extends CalculusFieldElement<T>> TimeStampedFieldAngularCoordinates<T> correctedYaw(final GNSSFieldAttitudeContext<T> context) {
final Field<T> field = context.getDate().getField();
// noon beta angle limit from yaw rate
final T aNoon = FastMath.atan(context.getMuRate().divide(yawRate));
final T aNight = field.getZero().newInstance(NIGHT_TURN_LIMIT);
final double cNoon = FastMath.cos(aNoon.getReal());
final double cNight = FastMath.cos(aNight.getReal());
if (context.setUpTurnRegion(cNight, cNoon)) {
final T absBeta = FastMath.abs(context.beta(context.getDate()));
context.setHalfSpan(context.inSunSide() ?
absBeta.multiply(FastMath.sqrt(aNoon.divide(absBeta).subtract(1.0))) :
context.inOrbitPlaneAbsoluteAngle(aNight.subtract(aNoon.getPi())),
END_MARGIN);
if (context.inTurnTimeRange()) {
// we need to ensure beta sign does not change during the turn
final T beta = context.getSecuredBeta();
final T phiStart = context.getYawStart(beta);
final T dtStart = context.timeSinceTurnStart();
final T linearPhi;
final T phiDot;
if (context.inSunSide()) {
// noon turn
if (beta.getReal() > 0 && beta.getReal() < yawBias) {
// noon turn problem for small positive beta in block IIA
// rotation is in the wrong direction for these spacecrafts
phiDot = field.getZero().newInstance(FastMath.copySign(yawRate, beta.getReal()));
linearPhi = phiStart.add(phiDot.multiply(dtStart));
} else {
// regular noon turn
phiDot = field.getZero().newInstance(-FastMath.copySign(yawRate, beta.getReal()));
linearPhi = phiStart.add(phiDot.multiply(dtStart));
}
} else {
// midnight turn
phiDot = field.getZero().newInstance(yawRate);
linearPhi = phiStart.add(phiDot.multiply(dtStart));
}
if (context.linearModelStillActive(linearPhi, phiDot)) {
// we are still in the linear model phase
return context.turnCorrectedAttitude(linearPhi, phiDot);
}
}
}
// in nominal yaw mode
return context.nominalYaw(context.getDate());
}
}