DSSTGravityContext.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.semianalytical.dsst.forces;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider;
import org.orekit.frames.Frame;
import org.orekit.frames.StaticTransform;
import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
/**
* This class is a container for the common parameters used in {@link DSSTTesseral} and {@link DSSTZonal}.
* <p>
* It performs parameters initialization at each integration step for the Tesseral and Zonal contribution
* to the central body gravitational perturbation.
* </p>
* @author Bryan Cazabonne
* @author Maxime Journot
* @since 12.2
*/
public class DSSTGravityContext extends ForceModelContext {
/** A = sqrt(μ * a). */
private final double A;
/** Χ = 1 / sqrt(1 - e²) = 1 / B. */
private final double chi;
/** Χ². */
private final double chi2;
// Common factors from equinoctial coefficients
/** 2 * a / A . */
private final double ax2oA;
/** 1 / (A * B) . */
private final double ooAB;
/** B / A . */
private final double BoA;
/** B / (A * (1 + B)) . */
private final double BoABpo;
/** C / (2 * A * B) . */
private final double Co2AB;
/** μ / a . */
private final double muoa;
/** R / a . */
private final double roa;
/** Keplerian mean motion. */
private final double n;
/** Direction cosine α. */
private final double alpha;
/** Direction cosine β. */
private final double beta;
/** Direction cosine γ. */
private final double gamma;
/** Transform from body-fixed frame to inertial frame. */
private final StaticTransform bodyFixedToInertialTransform;
/**
* Constructor.
*
* @param auxiliaryElements auxiliary elements related to the current orbit
* @param bodyFixedFrame rotating body frame
* @param provider provider for spherical harmonics
* @param parameters values of the force model parameters
*/
DSSTGravityContext(final AuxiliaryElements auxiliaryElements,
final Frame bodyFixedFrame,
final UnnormalizedSphericalHarmonicsProvider provider,
final double[] parameters) {
super(auxiliaryElements);
// µ
final double mu = parameters[0];
// Semi-major axis
final double a = auxiliaryElements.getSma();
// Keplerian Mean Motion
final double absA = FastMath.abs(a);
this.n = FastMath.sqrt(mu / absA) / absA;
// A = sqrt(µ * |a|)
this.A = FastMath.sqrt(mu * absA);
// Χ = 1 / B
final double B = auxiliaryElements.getB();
this.chi = 1. / B;
this.chi2 = chi * chi;
// Common factors from equinoctial coefficients
// 2 * a / A
this.ax2oA = 2. * a / A;
// B / A
this.BoA = B / A;
// 1 / AB
this.ooAB = 1. / (A * B);
// C / 2AB
this.Co2AB = auxiliaryElements.getC() * ooAB / 2.;
// B / (A * (1 + B))
this.BoABpo = BoA / (1. + B);
// &mu / a
this.muoa = mu / a;
// R / a
this.roa = provider.getAe() / a;
// If (centralBodyFrame == null), then centralBodyFrame = orbit frame (see DSSTZonal constructors for more on this).
final Frame internalBodyFixedFrame = bodyFixedFrame == null ? auxiliaryElements.getFrame() : bodyFixedFrame;
// Transform from body-fixed frame (typically ITRF) to inertial frame
this.bodyFixedToInertialTransform = internalBodyFixedFrame.
getStaticTransformTo(auxiliaryElements.getFrame(), auxiliaryElements.getDate());
final Vector3D zB = bodyFixedToInertialTransform.transformVector(Vector3D.PLUS_K);
// Direction cosines for central body [Eq. 2.1.9-(1)]
this.alpha = Vector3D.dotProduct(zB, auxiliaryElements.getVectorF());
this.beta = Vector3D.dotProduct(zB, auxiliaryElements.getVectorG());
this.gamma = Vector3D.dotProduct(zB, auxiliaryElements.getVectorW());
}
/** Getter for the a.
* @return the a
*/
public double getA() {
return A;
}
/** Getter for the chi.
* @return the chi
*/
public double getChi() {
return chi;
}
/** Getter for the chi2.
* @return the chi2
*/
public double getChi2() {
return chi2;
}
/** Getter for the ax2oA.
* @return the ax2oA
*/
public double getAx2oA() {
return ax2oA;
}
/** ooAB = 1 / (A * B).
* @return the ooAB
*/
public double getOoAB() {
return ooAB;
}
/** Get B / A.
* @return the boA
*/
public double getBoA() {
return BoA;
}
/** Get BoABpo = B / A(1 + B).
* @return the boABpo
*/
public double getBoABpo() {
return BoABpo;
}
/** Get Co2AB = C / 2AB.
* @return the co2AB
*/
public double getCo2AB() {
return Co2AB;
}
/** Get μ / a.
* @return the muoa
*/
public double getMuoa() {
return muoa;
}
/** Get roa = R / a.
* @return the roa
*/
public double getRoa() {
return roa;
}
/**
* Get the Keplerian mean motion.
* <p>
* The Keplerian mean motion is computed directly from semi major axis and
* central acceleration constant.
* </p>
* @return Keplerian mean motion in radians per second
*/
public double getMeanMotion() {
return n;
}
/** Get direction cosine α for central body.
* @return α
*/
public double getAlpha() {
return alpha;
}
/** Get direction cosine β for central body.
* @return β
*/
public double getBeta() {
return beta;
}
/** Get direction cosine γ for central body.
* @return γ
*/
public double getGamma() {
return gamma;
}
/** Getter for the bodyFixedToInertialTransform.
* @return the bodyFixedToInertialTransform
*/
public StaticTransform getBodyFixedToInertialTransform() {
return bodyFixedToInertialTransform;
}
}