FieldDSSTTesseralContext.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.semianalytical.dsst.forces;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;
import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider;
import org.orekit.frames.FieldStaticTransform;
import org.orekit.frames.Frame;
import org.orekit.propagation.semianalytical.dsst.utilities.FieldAuxiliaryElements;
import org.orekit.time.AbsoluteDate;
/**
* This class is a container for the common "field" parameters used in {@link DSSTTesseral}.
* <p>
* It performs parameters initialization at each integration step for the Tesseral contribution
* to the central body gravitational perturbation.
* </p>
* @author Bryan Cazabonne
* @since 10.0
* @param <T> type of the field elements
*/
public class FieldDSSTTesseralContext<T extends CalculusFieldElement<T>> extends FieldDSSTGravityContext<T> {
/** Retrograde factor I.
* <p>
* DSST model needs equinoctial orbit as internal representation.
* Classical equinoctial elements have discontinuities when inclination
* is close to zero. In this representation, I = +1. <br>
* To avoid this discontinuity, another representation exists and equinoctial
* elements can be expressed in a different way, called "retrograde" orbit.
* This implies I = -1. <br>
* As Orekit doesn't implement the retrograde orbit, I is always set to +1.
* But for the sake of consistency with the theory, the retrograde factor
* has been kept in the formulas.
* </p>
*/
private static final int I = 1;
/** Central body rotation angle θ. */
private T theta;
/** ecc². */
private T e2;
/** Keplerian period. */
private T period;
/** Ratio of satellite period to central body rotation period. */
private T ratio;
/**
* Simple constructor.
*
* @param auxiliaryElements auxiliary elements related to the current orbit
* @param centralBodyFrame rotating body frame
* @param provider provider for spherical harmonics
* @param maxFrequencyShortPeriodics maximum value for j
* @param bodyPeriod central body rotation period (seconds)
* @param parameters values of the force model parameters (only 1 values
* for each parameters corresponding to state date) obtained by calling
* the extract parameter method {@link #extractParameters(double[], AbsoluteDate)}
* to selected the right value for state date or by getting the parameters for a specific date
*/
FieldDSSTTesseralContext(final FieldAuxiliaryElements<T> auxiliaryElements,
final Frame centralBodyFrame,
final UnnormalizedSphericalHarmonicsProvider provider,
final int maxFrequencyShortPeriodics,
final double bodyPeriod,
final T[] parameters) {
super(auxiliaryElements, centralBodyFrame, provider, parameters);
// Get field and zero
final Field<T> field = auxiliaryElements.getDate().getField();
final T zero = field.getZero();
// Keplerian period
final T a = auxiliaryElements.getSma();
period = (a.getReal() < 0) ? zero.newInstance(Double.POSITIVE_INFINITY) : getMeanMotion().reciprocal().multiply(MathUtils.TWO_PI);
// Eccentricity square
e2 = auxiliaryElements.getEcc().multiply(auxiliaryElements.getEcc());
// Central body rotation angle from equation 2.7.1-(3)(4).
final FieldStaticTransform<T> t = getBodyFixedToInertialTransform();
final FieldVector3D<T> xB = t.transformVector(FieldVector3D.getPlusI(field));
final FieldVector3D<T> yB = t.transformVector(FieldVector3D.getPlusJ(field));
theta = FastMath.atan2(auxiliaryElements.getVectorF().dotProduct(yB).negate().add((auxiliaryElements.getVectorG().dotProduct(xB)).multiply(I)),
auxiliaryElements.getVectorF().dotProduct(xB).add(auxiliaryElements.getVectorG().dotProduct(yB).multiply(I)));
// Ratio of satellite to central body periods to define resonant terms
ratio = period.divide(bodyPeriod);
}
/** Get ecc².
* @return e2
*/
public T getE2() {
return e2;
}
/** Get Central body rotation angle θ.
* @return theta
*/
public T getTheta() {
return theta;
}
/** Get μ / a .
* @return moa
* @deprecated since 12.2 Use getMuoa() instead
*/
@Deprecated
public T getMoa() {
return getMuoa();
}
/** Get the Keplerian period.
* <p>The Keplerian period is computed directly from semi major axis
* and central acceleration constant.</p>
* @return Keplerian period in seconds, or positive infinity for hyperbolic orbits
*/
public T getOrbitPeriod() {
return period;
}
/** Get the ratio of satellite period to central body rotation period.
* @return ratio
*/
public T getRatio() {
return ratio;
}
}