public class FieldAbsolutePVCoordinates<T extends CalculusFieldElement<T>> extends TimeStampedFieldPVCoordinates<T> implements FieldTimeStamped<T>, FieldTimeInterpolable<FieldAbsolutePVCoordinates<T>,T>, FieldPVCoordinatesProvider<T>
AbsolutePVCoordinates
Modifier and Type | Method and Description |
---|---|
Frame |
getFrame()
Get the frame in which the coordinates are defined.
|
TimeStampedFieldPVCoordinates<T> |
getPVCoordinates()
Get the TimeStampedFieldPVCoordinates.
|
TimeStampedFieldPVCoordinates<T> |
getPVCoordinates(FieldAbsoluteDate<T> otherDate,
Frame outputFrame)
Get the
FieldPVCoordinates of the body in the selected frame. |
TimeStampedFieldPVCoordinates<T> |
getPVCoordinates(Frame outputFrame)
Get the TimeStampedFieldPVCoordinates in a specified frame.
|
FieldAbsolutePVCoordinates<T> |
interpolate(FieldAbsoluteDate<T> date,
Stream<FieldAbsolutePVCoordinates<T>> sample)
Get an interpolated instance.
|
static <T extends CalculusFieldElement<T>> |
interpolate(Frame frame,
FieldAbsoluteDate<T> date,
CartesianDerivativesFilter filter,
Stream<FieldAbsolutePVCoordinates<T>> sample)
Interpolate position-velocity.
|
FieldAbsolutePVCoordinates<T> |
shiftedBy(double dt)
Get a time-shifted state.
|
FieldAbsolutePVCoordinates<T> |
shiftedBy(T dt)
Get a time-shifted state.
|
AbsolutePVCoordinates |
toAbsolutePVCoordinates()
Converts to an AbsolutePVCoordinates instance.
|
FieldPVCoordinatesProvider<T> |
toTaylorProvider()
Create a local provider using simply Taylor expansion through
shiftedBy(double) . |
getDate, interpolate, interpolate, toString, toString, toTimeStampedPVCoordinates
crossProduct, estimateVelocity, getAcceleration, getAngularVelocity, getMomentum, getPosition, getVelocity, getZero, negate, normalize, toDerivativeStructurePV, toDerivativeStructureVector, toPVCoordinates, toUnivariateDerivative1PV, toUnivariateDerivative1Vector, toUnivariateDerivative2PV, toUnivariateDerivative2Vector
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getDate
interpolate
public FieldAbsolutePVCoordinates(Frame frame, FieldAbsoluteDate<T> date, FieldVector3D<T> position, FieldVector3D<T> velocity, FieldVector3D<T> acceleration)
frame
- the frame in which the coordinates are defineddate
- coordinates dateposition
- the position vector (m)velocity
- the velocity vector (m/s)acceleration
- the acceleration vector (m/sÂý)public FieldAbsolutePVCoordinates(Frame frame, FieldAbsoluteDate<T> date, FieldVector3D<T> position, FieldVector3D<T> velocity)
frame
- the frame in which the coordinates are defineddate
- coordinates dateposition
- the position vector (m)velocity
- the velocity vector (m/s)public FieldAbsolutePVCoordinates(Frame frame, FieldAbsoluteDate<T> date, FieldPVCoordinates<T> pva)
frame
- the frame in which the coordinates are defineddate
- date of the coordinatespva
- TimeStampedPVCoordinatespublic FieldAbsolutePVCoordinates(Frame frame, TimeStampedFieldPVCoordinates<T> pva)
frame
- the frame in which the coordinates are definedpva
- TimeStampedFieldPVCoordinatespublic FieldAbsolutePVCoordinates(FieldAbsoluteDate<T> date, T a, FieldAbsolutePVCoordinates<T> AbsPva)
Build a FieldAbsolutePVCoordinates from another one and a scale factor.
The TimeStampedFieldPVCoordinates built will be a * AbsPva
date
- date of the built coordinatesa
- scale factorAbsPva
- base (unscaled) FieldAbsolutePVCoordinatespublic FieldAbsolutePVCoordinates(FieldAbsoluteDate<T> date, FieldAbsolutePVCoordinates<T> start, FieldAbsolutePVCoordinates<T> end)
Build a relative FieldAbsolutePVCoordinates from a start and an end position.
The FieldAbsolutePVCoordinates built will be end - start.
In case start and end use two different pseudo-inertial frames, the new FieldAbsolutePVCoordinates arbitrarily be defined in the start frame.
date
- date of the built coordinatesstart
- Starting FieldAbsolutePVCoordinatesend
- ending FieldAbsolutePVCoordinatespublic FieldAbsolutePVCoordinates(FieldAbsoluteDate<T> date, T a1, FieldAbsolutePVCoordinates<T> absPv1, T a2, FieldAbsolutePVCoordinates<T> absPv2)
Build a FieldAbsolutePVCoordinates from two other ones and corresponding scale factors.
The FieldAbsolutePVCoordinates built will be a1 * u1 + a2 * u2
In case the FieldAbsolutePVCoordinates use different pseudo-inertial frames, the new FieldAbsolutePVCoordinates arbitrarily be defined in the first frame.
date
- date of the built coordinatesa1
- first scale factorabsPv1
- first base (unscaled) FieldAbsolutePVCoordinatesa2
- second scale factorabsPv2
- second base (unscaled) FieldAbsolutePVCoordinatespublic FieldAbsolutePVCoordinates(FieldAbsoluteDate<T> date, T a1, FieldAbsolutePVCoordinates<T> absPv1, T a2, FieldAbsolutePVCoordinates<T> absPv2, T a3, FieldAbsolutePVCoordinates<T> absPv3)
Build a FieldAbsolutePVCoordinates from three other ones and corresponding scale factors.
The FieldAbsolutePVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3
In case the FieldAbsolutePVCoordinates use different pseudo-inertial frames, the new FieldAbsolutePVCoordinates arbitrarily be defined in the first frame.
date
- date of the built coordinatesa1
- first scale factorabsPv1
- first base (unscaled) FieldAbsolutePVCoordinatesa2
- second scale factorabsPv2
- second base (unscaled) FieldAbsolutePVCoordinatesa3
- third scale factorabsPv3
- third base (unscaled) FieldAbsolutePVCoordinatespublic FieldAbsolutePVCoordinates(FieldAbsoluteDate<T> date, T a1, FieldAbsolutePVCoordinates<T> absPv1, T a2, FieldAbsolutePVCoordinates<T> absPv2, T a3, FieldAbsolutePVCoordinates<T> absPv3, T a4, FieldAbsolutePVCoordinates<T> absPv4)
Build a FieldAbsolutePVCoordinates from four other ones and corresponding scale factors.
The FieldAbsolutePVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
In case the FieldAbsolutePVCoordinates use different pseudo-inertial frames, the new AbsolutePVCoordinates arbitrarily be defined in the first frame.
date
- date of the built coordinatesa1
- first scale factorabsPv1
- first base (unscaled) FieldAbsolutePVCoordinatesa2
- second scale factorabsPv2
- second base (unscaled) FieldAbsolutePVCoordinatesa3
- third scale factorabsPv3
- third base (unscaled) FieldAbsolutePVCoordinatesa4
- fourth scale factorabsPv4
- fourth base (unscaled) FieldAbsolutePVCoordinatespublic FieldAbsolutePVCoordinates(Frame frame, FieldAbsoluteDate<T> date, FieldVector3D<U> p)
FieldVector3D
<DerivativeStructure
>.
The vector components must have time as their only derivation parameter and have consistent derivation orders.
U
- type of the derivativeframe
- the frame in which the parameters are defineddate
- date of the built coordinatesp
- vector with time-derivatives embedded within the coordinatespublic FieldAbsolutePVCoordinates<T> shiftedBy(T dt)
The state can be slightly shifted to close dates. This shift is based on a simple Taylor expansion. It is not intended as a replacement for proper orbit propagation (it is not even Keplerian!) but should be sufficient for either small time shifts or coarse accuracy.
shiftedBy
in class TimeStampedFieldPVCoordinates<T extends CalculusFieldElement<T>>
dt
- time shift in secondspublic FieldAbsolutePVCoordinates<T> shiftedBy(double dt)
The state can be slightly shifted to close dates. This shift is based on a simple Taylor expansion. It is not intended as a replacement for proper orbit propagation (it is not even Keplerian!) but should be sufficient for either small time shifts or coarse accuracy.
shiftedBy
in interface TimeShiftable<FieldPVCoordinates<T extends CalculusFieldElement<T>>>
shiftedBy
in class TimeStampedFieldPVCoordinates<T extends CalculusFieldElement<T>>
dt
- time shift in secondspublic FieldPVCoordinatesProvider<T> toTaylorProvider()
shiftedBy(double)
.
The time evolution is based on a simple Taylor expansion. It is not intended as a replacement for proper orbit propagation (it is not even Keplerian!) but should be sufficient for either small time shifts or coarse accuracy.
public Frame getFrame()
public TimeStampedFieldPVCoordinates<T> getPVCoordinates()
public TimeStampedFieldPVCoordinates<T> getPVCoordinates(Frame outputFrame)
outputFrame
- frame in which the position/velocity coordinates shall be computedOrekitException
- if transformation between frames cannot be computedgetPVCoordinates()
public TimeStampedFieldPVCoordinates<T> getPVCoordinates(FieldAbsoluteDate<T> otherDate, Frame outputFrame)
FieldPVCoordinatesProvider
FieldPVCoordinates
of the body in the selected frame.getPVCoordinates
in interface FieldPVCoordinatesProvider<T extends CalculusFieldElement<T>>
otherDate
- current dateoutputFrame
- the frame where to define the positionpublic FieldAbsolutePVCoordinates<T> interpolate(FieldAbsoluteDate<T> date, Stream<FieldAbsolutePVCoordinates<T>> sample)
FieldTimeInterpolable
Note that the state of the current instance may not be used in the interpolation process, only its type and non interpolable fields are used (for example central attraction coefficient or frame when interpolating orbits). The interpolable fields taken into account are taken only from the states of the sample points. So if the state of the instance must be used, the instance should be included in the sample points.
Note that this method is designed for small samples only (say up to about 10-20 points) so it can be implemented using polynomial interpolation (typically Hermite interpolation). Using too much points may induce Runge's phenomenon and numerical problems (including NaN appearing).
interpolate
in interface FieldTimeInterpolable<FieldAbsolutePVCoordinates<T extends CalculusFieldElement<T>>,T extends CalculusFieldElement<T>>
date
- interpolation datesample
- sample points on which interpolation should be donepublic static <T extends CalculusFieldElement<T>> FieldAbsolutePVCoordinates<T> interpolate(Frame frame, FieldAbsoluteDate<T> date, CartesianDerivativesFilter filter, Stream<FieldAbsolutePVCoordinates<T>> sample)
The interpolated instance is created by polynomial Hermite interpolation ensuring velocity remains the exact derivative of position.
Note that even if first time derivatives (velocities) from sample can be ignored, the interpolated instance always includes interpolated derivatives. This feature can be used explicitly to compute these derivatives when it would be too complex to compute them from an analytical formula: just compute a few sample points from the explicit formula and set the derivatives to zero in these sample points, then use interpolation to add derivatives consistent with the positions.
T
- the type of the field elementsframe
- frame for the interpolted instancedate
- interpolation datefilter
- filter for derivatives from the sample to use in interpolationsample
- sample points on which interpolation should be doneOrekitIllegalArgumentException
- if some elements in the sample do not
have the same defining frame as otherpublic AbsolutePVCoordinates toAbsolutePVCoordinates()
Copyright © 2002-2022 CS GROUP. All rights reserved.