public class BrouwerLyddanePropagator extends AbstractAnalyticalPropagator
SpacecraftState
using the analytical Brouwer-Lyddane model (from J2 to J5 zonal harmonics).
At the opposite of the EcksteinHechlerPropagator
, the Brouwer-Lyddane model is
suited for elliptical orbits, there is no problem having a rather small eccentricity or inclination
(Lyddane helped to solve this issue with the Brouwer model). Singularity for the critical
inclination i = 63.4° is avoided using the method developed in Warren Phipps' 1992 thesis.
By default, Brouwer-Lyddane model considers only the perturbations due to zonal harmonics.
However, for low Earth orbits, the magnitude of the perturbative acceleration due to
atmospheric drag can be significant. Warren Phipps' 1992 thesis considered the atmospheric
drag by time derivatives of the mean mean anomaly using the catch-all coefficient
M2Driver
.
Usually, M2 is adjusted during an orbit determination process and it represents the
combination of all unmodeled secular along-track effects (i.e. not just the atmospheric drag).
The behavior of M2 is close to the TLE.getBStar()
parameter for the TLE.
If the value of M2 is equal to 0.0
, the along-track secular effects are not
considered in the dynamical model. Typical values for M2 are not known. It depends on the
orbit type. However, the value of M2 must be very small (e.g. between 1.0e-14 and 1.0e-15).
The unit of M2 is rad/s².
The along-track effects, represented by the secular rates of the mean semi-major axis
and eccentricity, are computed following Eq. 2.38, 2.41, and 2.45 of Warren Phipps' thesis.
Modifier and Type | Field and Description |
---|---|
static double |
M2
Default value for M2 coefficient.
|
static String |
M2_NAME
Parameter name for M2 coefficient.
|
DEFAULT_MASS
Constructor and Description |
---|
BrouwerLyddanePropagator(Orbit initialOrbit,
AttitudeProvider attitudeProv,
double referenceRadius,
double mu,
double c20,
double c30,
double c40,
double c50,
double M2)
Build a propagator from orbit, attitude provider and potential.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
AttitudeProvider attitudeProv,
double mass,
double referenceRadius,
double mu,
double c20,
double c30,
double c40,
double c50,
double M2)
Build a propagator from orbit, attitude provider, mass and potential.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
AttitudeProvider attitudeProv,
double mass,
double referenceRadius,
double mu,
double c20,
double c30,
double c40,
double c50,
PropagationType initialType,
double M2)
Build a propagator from orbit, attitude provider, mass and potential.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
AttitudeProvider attitudeProv,
double mass,
double referenceRadius,
double mu,
double c20,
double c30,
double c40,
double c50,
PropagationType initialType,
double M2,
double epsilon,
int maxIterations)
Build a propagator from orbit, attitude provider, mass and potential.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
AttitudeProvider attitudeProv,
double mass,
UnnormalizedSphericalHarmonicsProvider provider,
double M2)
Build a propagator from orbit, attitude provider, mass and potential provider.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
AttitudeProvider attitudeProv,
double mass,
UnnormalizedSphericalHarmonicsProvider provider,
PropagationType initialType,
double M2)
Build a propagator from orbit, attitude provider, mass and potential provider.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
AttitudeProvider attitude,
double mass,
UnnormalizedSphericalHarmonicsProvider provider,
UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics harmonics,
double M2)
Private helper constructor.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
AttitudeProvider attitude,
double mass,
UnnormalizedSphericalHarmonicsProvider provider,
UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics harmonics,
PropagationType initialType,
double M2)
Private helper constructor.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
AttitudeProvider attitudeProv,
UnnormalizedSphericalHarmonicsProvider provider,
double M2)
Build a propagator from orbit, attitude provider and potential provider.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
double referenceRadius,
double mu,
double c20,
double c30,
double c40,
double c50,
double M2)
Build a propagator from orbit and potential.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
double mass,
double referenceRadius,
double mu,
double c20,
double c30,
double c40,
double c50,
double M2)
Build a propagator from orbit, mass and potential.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
double mass,
UnnormalizedSphericalHarmonicsProvider provider,
double M2)
Build a propagator from orbit, mass and potential provider.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
UnnormalizedSphericalHarmonicsProvider provider,
double M2)
Build a propagator from orbit and potential provider.
|
BrouwerLyddanePropagator(Orbit initialOrbit,
UnnormalizedSphericalHarmonicsProvider provider,
PropagationType initialType,
double M2)
Build a propagator from orbit and potential provider.
|
Modifier and Type | Method and Description |
---|---|
static KeplerianOrbit |
computeMeanOrbit(Orbit osculating,
double referenceRadius,
double mu,
double c20,
double c30,
double c40,
double c50,
double M2Value,
double epsilon,
int maxIterations)
Conversion from osculating to mean orbit.
|
static KeplerianOrbit |
computeMeanOrbit(Orbit osculating,
UnnormalizedSphericalHarmonicsProvider provider,
UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics harmonics,
double M2Value)
Conversion from osculating to mean orbit.
|
static KeplerianOrbit |
computeMeanOrbit(Orbit osculating,
UnnormalizedSphericalHarmonicsProvider provider,
UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics harmonics,
double M2Value,
double epsilon,
int maxIterations)
Conversion from osculating to mean orbit.
|
protected AbstractMatricesHarvester |
createHarvester(String stmName,
RealMatrix initialStm,
DoubleArrayDictionary initialJacobianColumns)
Create the harvester suitable for propagator.
|
double[] |
getCk0()
Get the un-normalized zonal coefficients.
|
protected List<String> |
getJacobiansColumnsNames()
Get the names of the parameters in the matrix returned by
MatricesHarvester.getParametersJacobian(org.orekit.propagation.SpacecraftState) . |
double |
getM2()
Get the value of the M2 drag parameter.
|
protected double |
getMass(AbsoluteDate date)
Get the mass.
|
double |
getMu()
Get the central attraction coefficient μ.
|
List<ParameterDriver> |
getParametersDrivers()
Get the parameters driver for propagation model.
|
double |
getReferenceRadius()
Get the reference radius of the central body attraction model.
|
KeplerianOrbit |
propagateOrbit(AbsoluteDate date)
Extrapolate an orbit up to a specific target date.
|
void |
resetInitialState(SpacecraftState state)
Reset the propagator initial state.
|
void |
resetInitialState(SpacecraftState state,
PropagationType stateType)
Reset the propagator initial state.
|
void |
resetInitialState(SpacecraftState state,
PropagationType stateType,
double epsilon,
int maxIterations)
Reset the propagator initial state.
|
protected void |
resetIntermediateState(SpacecraftState state,
boolean forward)
Reset an intermediate state.
|
protected void |
resetIntermediateState(SpacecraftState state,
boolean forward,
double epsilon,
int maxIterations)
Reset an intermediate state.
|
acceptStep, addEventDetector, basicPropagate, clearEventsDetectors, getEphemerisGenerator, getEventsDetectors, getPvProvider, propagate
addAdditionalStateProvider, getAdditionalStateProviders, getAttitudeProvider, getFrame, getHarvester, getInitialState, getManagedAdditionalStates, getMultiplexer, getPVCoordinates, getStartDate, initializeAdditionalStates, initializePropagation, isAdditionalStateManaged, propagate, setAttitudeProvider, setStartDate, setupMatricesComputation, stateChanged, updateAdditionalStates, updateUnmanagedStates
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clearStepHandlers, getDefaultLaw, setStepHandler, setStepHandler
public static final String M2_NAME
public static final double M2
public BrouwerLyddanePropagator(Orbit initialOrbit, UnnormalizedSphericalHarmonicsProvider provider, double M2)
Mass and attitude provider are set to unspecified non-null arbitrary values.
Using this constructor, an initial osculating orbit is considered.
initialOrbit
- initial orbitprovider
- for un-normalized zonal coefficientsM2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedBrouwerLyddanePropagator(Orbit, AttitudeProvider, UnnormalizedSphericalHarmonicsProvider, double)
,
BrouwerLyddanePropagator(Orbit, UnnormalizedSphericalHarmonicsProvider, PropagationType, double)
public BrouwerLyddanePropagator(Orbit initialOrbit, AttitudeProvider attitude, double mass, UnnormalizedSphericalHarmonicsProvider provider, UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics harmonics, double M2)
Using this constructor, an initial osculating orbit is considered.
initialOrbit
- initial orbitattitude
- attitude providermass
- spacecraft massprovider
- for un-normalized zonal coefficientsharmonics
- provider.onDate(initialOrbit.getDate())
M2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedBrouwerLyddanePropagator(Orbit, AttitudeProvider, double,
UnnormalizedSphericalHarmonicsProvider,
UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics,
PropagationType, double)
public BrouwerLyddanePropagator(Orbit initialOrbit, double referenceRadius, double mu, double c20, double c30, double c40, double c50, double M2)
Mass and attitude provider are set to unspecified non-null arbitrary values.
The Cn,0 coefficients are the denormalized zonal coefficients, they are related to both the normalized coefficients Cn,0 and the Jn one as follows:
Cn,0 = [(2-δ0,m)(2n+1)(n-m)!/(n+m)!]½ Cn,0
Cn,0 = -Jn
Using this constructor, an initial osculating orbit is considered.
initialOrbit
- initial orbitreferenceRadius
- reference radius of the Earth for the potential model (m)mu
- central attraction coefficient (m³/s²)c20
- un-normalized zonal coefficient (about -1.08e-3 for Earth)c30
- un-normalized zonal coefficient (about +2.53e-6 for Earth)c40
- un-normalized zonal coefficient (about +1.62e-6 for Earth)c50
- un-normalized zonal coefficient (about +2.28e-7 for Earth)M2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedConstants
,
BrouwerLyddanePropagator(Orbit, AttitudeProvider, double, double, double,
double, double, double, double, double)
public BrouwerLyddanePropagator(Orbit initialOrbit, double mass, UnnormalizedSphericalHarmonicsProvider provider, double M2)
Attitude law is set to an unspecified non-null arbitrary value.
Using this constructor, an initial osculating orbit is considered.
initialOrbit
- initial orbitmass
- spacecraft massprovider
- for un-normalized zonal coefficientsM2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedBrouwerLyddanePropagator(Orbit, AttitudeProvider, double, UnnormalizedSphericalHarmonicsProvider, double)
public BrouwerLyddanePropagator(Orbit initialOrbit, double mass, double referenceRadius, double mu, double c20, double c30, double c40, double c50, double M2)
Attitude law is set to an unspecified non-null arbitrary value.
The Cn,0 coefficients are the denormalized zonal coefficients, they are related to both the normalized coefficients Cn,0 and the Jn one as follows:
Cn,0 = [(2-δ0,m)(2n+1)(n-m)!/(n+m)!]½ Cn,0
Cn,0 = -Jn
Using this constructor, an initial osculating orbit is considered.
initialOrbit
- initial orbitmass
- spacecraft massreferenceRadius
- reference radius of the Earth for the potential model (m)mu
- central attraction coefficient (m³/s²)c20
- un-normalized zonal coefficient (about -1.08e-3 for Earth)c30
- un-normalized zonal coefficient (about +2.53e-6 for Earth)c40
- un-normalized zonal coefficient (about +1.62e-6 for Earth)c50
- un-normalized zonal coefficient (about +2.28e-7 for Earth)M2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedBrouwerLyddanePropagator(Orbit, AttitudeProvider, double, double, double,
double, double, double, double, double)
public BrouwerLyddanePropagator(Orbit initialOrbit, AttitudeProvider attitudeProv, UnnormalizedSphericalHarmonicsProvider provider, double M2)
Mass is set to an unspecified non-null arbitrary value.
Using this constructor, an initial osculating orbit is considered.
initialOrbit
- initial orbitattitudeProv
- attitude providerprovider
- for un-normalized zonal coefficientsM2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedpublic BrouwerLyddanePropagator(Orbit initialOrbit, AttitudeProvider attitudeProv, double referenceRadius, double mu, double c20, double c30, double c40, double c50, double M2)
Mass is set to an unspecified non-null arbitrary value.
The Cn,0 coefficients are the denormalized zonal coefficients, they are related to both the normalized coefficients Cn,0 and the Jn one as follows:
Cn,0 = [(2-δ0,m)(2n+1)(n-m)!/(n+m)!]½ Cn,0
Cn,0 = -Jn
Using this constructor, an initial osculating orbit is considered.
initialOrbit
- initial orbitattitudeProv
- attitude providerreferenceRadius
- reference radius of the Earth for the potential model (m)mu
- central attraction coefficient (m³/s²)c20
- un-normalized zonal coefficient (about -1.08e-3 for Earth)c30
- un-normalized zonal coefficient (about +2.53e-6 for Earth)c40
- un-normalized zonal coefficient (about +1.62e-6 for Earth)c50
- un-normalized zonal coefficient (about +2.28e-7 for Earth)M2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedpublic BrouwerLyddanePropagator(Orbit initialOrbit, AttitudeProvider attitudeProv, double mass, UnnormalizedSphericalHarmonicsProvider provider, double M2)
Using this constructor, an initial osculating orbit is considered.
initialOrbit
- initial orbitattitudeProv
- attitude providermass
- spacecraft massprovider
- for un-normalized zonal coefficientsM2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedBrouwerLyddanePropagator(Orbit, AttitudeProvider, double,
UnnormalizedSphericalHarmonicsProvider, PropagationType, double)
public BrouwerLyddanePropagator(Orbit initialOrbit, AttitudeProvider attitudeProv, double mass, double referenceRadius, double mu, double c20, double c30, double c40, double c50, double M2)
The Cn,0 coefficients are the denormalized zonal coefficients, they are related to both the normalized coefficients Cn,0 and the Jn one as follows:
Cn,0 = [(2-δ0,m)(2n+1)(n-m)!/(n+m)!]½ Cn,0
Cn,0 = -Jn
Using this constructor, an initial osculating orbit is considered.
initialOrbit
- initial orbitattitudeProv
- attitude providermass
- spacecraft massreferenceRadius
- reference radius of the Earth for the potential model (m)mu
- central attraction coefficient (m³/s²)c20
- un-normalized zonal coefficient (about -1.08e-3 for Earth)c30
- un-normalized zonal coefficient (about +2.53e-6 for Earth)c40
- un-normalized zonal coefficient (about +1.62e-6 for Earth)c50
- un-normalized zonal coefficient (about +2.28e-7 for Earth)M2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedBrouwerLyddanePropagator(Orbit, AttitudeProvider, double, double, double,
double, double, double, double, PropagationType, double)
public BrouwerLyddanePropagator(Orbit initialOrbit, UnnormalizedSphericalHarmonicsProvider provider, PropagationType initialType, double M2)
Mass and attitude provider are set to unspecified non-null arbitrary values.
Using this constructor, it is possible to define the initial orbit as a mean Brouwer-Lyddane orbit or an osculating one.
initialOrbit
- initial orbitprovider
- for un-normalized zonal coefficientsinitialType
- initial orbit type (mean Brouwer-Lyddane orbit or osculating orbit)M2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedpublic BrouwerLyddanePropagator(Orbit initialOrbit, AttitudeProvider attitudeProv, double mass, UnnormalizedSphericalHarmonicsProvider provider, PropagationType initialType, double M2)
Using this constructor, it is possible to define the initial orbit as a mean Brouwer-Lyddane orbit or an osculating one.
initialOrbit
- initial orbitattitudeProv
- attitude providermass
- spacecraft massprovider
- for un-normalized zonal coefficientsinitialType
- initial orbit type (mean Brouwer-Lyddane orbit or osculating orbit)M2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedpublic BrouwerLyddanePropagator(Orbit initialOrbit, AttitudeProvider attitude, double mass, UnnormalizedSphericalHarmonicsProvider provider, UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics harmonics, PropagationType initialType, double M2)
Using this constructor, it is possible to define the initial orbit as a mean Brouwer-Lyddane orbit or an osculating one.
initialOrbit
- initial orbitattitude
- attitude providermass
- spacecraft massprovider
- for un-normalized zonal coefficientsharmonics
- provider.onDate(initialOrbit.getDate())
initialType
- initial orbit type (mean Brouwer-Lyddane orbit or osculating orbit)M2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedpublic BrouwerLyddanePropagator(Orbit initialOrbit, AttitudeProvider attitudeProv, double mass, double referenceRadius, double mu, double c20, double c30, double c40, double c50, PropagationType initialType, double M2)
The Cn,0 coefficients are the denormalized zonal coefficients, they are related to both the normalized coefficients Cn,0 and the Jn one as follows:
Cn,0 = [(2-δ0,m)(2n+1)(n-m)!/(n+m)!]½ Cn,0
Cn,0 = -Jn
Using this constructor, it is possible to define the initial orbit as a mean Brouwer-Lyddane orbit or an osculating one.
initialOrbit
- initial orbitattitudeProv
- attitude providermass
- spacecraft massreferenceRadius
- reference radius of the Earth for the potential model (m)mu
- central attraction coefficient (m³/s²)c20
- un-normalized zonal coefficient (about -1.08e-3 for Earth)c30
- un-normalized zonal coefficient (about +2.53e-6 for Earth)c40
- un-normalized zonal coefficient (about +1.62e-6 for Earth)c50
- un-normalized zonal coefficient (about +2.28e-7 for Earth)initialType
- initial orbit type (mean Brouwer-Lyddane orbit or osculating orbit)M2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedpublic BrouwerLyddanePropagator(Orbit initialOrbit, AttitudeProvider attitudeProv, double mass, double referenceRadius, double mu, double c20, double c30, double c40, double c50, PropagationType initialType, double M2, double epsilon, int maxIterations)
The Cn,0 coefficients are the denormalized zonal coefficients, they are related to both the normalized coefficients Cn,0 and the Jn one as follows:
Cn,0 = [(2-δ0,m)(2n+1)(n-m)!/(n+m)!]½ Cn,0
Cn,0 = -Jn
Using this constructor, it is possible to define the initial orbit as a mean Brouwer-Lyddane orbit or an osculating one.
initialOrbit
- initial orbitattitudeProv
- attitude providermass
- spacecraft massreferenceRadius
- reference radius of the Earth for the potential model (m)mu
- central attraction coefficient (m³/s²)c20
- un-normalized zonal coefficient (about -1.08e-3 for Earth)c30
- un-normalized zonal coefficient (about +2.53e-6 for Earth)c40
- un-normalized zonal coefficient (about +1.62e-6 for Earth)c50
- un-normalized zonal coefficient (about +2.28e-7 for Earth)initialType
- initial orbit type (mean Brouwer-Lyddane orbit or osculating orbit)M2
- value of empirical drag coefficient in rad/s².
If equal to M2
drag is not computedepsilon
- convergence threshold for mean parameters conversionmaxIterations
- maximum iterations for mean parameters conversionpublic static KeplerianOrbit computeMeanOrbit(Orbit osculating, UnnormalizedSphericalHarmonicsProvider provider, UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics harmonics, double M2Value)
Compute mean orbit in a Brouwer-Lyddane sense, corresponding to the osculating SpacecraftState in input.
Since the osculating orbit is obtained with the computation of
short-periodic variation, the resulting output will depend on
both the gravity field parameterized in input and the
atmospheric drag represented by the m2
parameter.
The computation is done through a fixed-point iteration process.
osculating
- osculating orbit to convertprovider
- for un-normalized zonal coefficientsharmonics
- provider.onDate(osculating.getDate())
M2Value
- value of empirical drag coefficient in rad/s².
If equal to BrouwerLyddanePropagator.M2
drag is not consideredpublic static KeplerianOrbit computeMeanOrbit(Orbit osculating, UnnormalizedSphericalHarmonicsProvider provider, UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics harmonics, double M2Value, double epsilon, int maxIterations)
Compute mean orbit in a Brouwer-Lyddane sense, corresponding to the osculating SpacecraftState in input.
Since the osculating orbit is obtained with the computation of
short-periodic variation, the resulting output will depend on
both the gravity field parameterized in input and the
atmospheric drag represented by the m2
parameter.
The computation is done through a fixed-point iteration process.
osculating
- osculating orbit to convertprovider
- for un-normalized zonal coefficientsharmonics
- provider.onDate(osculating.getDate())
M2Value
- value of empirical drag coefficient in rad/s².
If equal to BrouwerLyddanePropagator.M2
drag is not consideredepsilon
- convergence threshold for mean parameters conversionmaxIterations
- maximum iterations for mean parameters conversionpublic static KeplerianOrbit computeMeanOrbit(Orbit osculating, double referenceRadius, double mu, double c20, double c30, double c40, double c50, double M2Value, double epsilon, int maxIterations)
Compute mean orbit in a Brouwer-Lyddane sense, corresponding to the osculating SpacecraftState in input.
Since the osculating orbit is obtained with the computation of
short-periodic variation, the resulting output will depend on
both the gravity field parameterized in input and the
atmospheric drag represented by the m2
parameter.
The computation is done through a fixed-point iteration process.
osculating
- osculating orbit to convertreferenceRadius
- reference radius of the Earth for the potential model (m)mu
- central attraction coefficient (m³/s²)c20
- un-normalized zonal coefficient (about -1.08e-3 for Earth)c30
- un-normalized zonal coefficient (about +2.53e-6 for Earth)c40
- un-normalized zonal coefficient (about +1.62e-6 for Earth)c50
- un-normalized zonal coefficient (about +2.28e-7 for Earth)M2Value
- value of empirical drag coefficient in rad/s².
If equal to BrouwerLyddanePropagator.M2
drag is not consideredepsilon
- convergence threshold for mean parameters conversionmaxIterations
- maximum iterations for mean parameters conversionpublic void resetInitialState(SpacecraftState state)
The new initial state to consider must be defined with an osculating orbit.
resetInitialState
in interface Propagator
resetInitialState
in class AbstractPropagator
state
- new initial state to considerresetInitialState(SpacecraftState, PropagationType)
public void resetInitialState(SpacecraftState state, PropagationType stateType)
state
- new initial state to considerstateType
- mean Brouwer-Lyddane orbit or osculating orbitpublic void resetInitialState(SpacecraftState state, PropagationType stateType, double epsilon, int maxIterations)
state
- new initial state to considerstateType
- mean Brouwer-Lyddane orbit or osculating orbitepsilon
- convergence threshold for mean parameters conversionmaxIterations
- maximum iterations for mean parameters conversionprotected void resetIntermediateState(SpacecraftState state, boolean forward)
resetIntermediateState
in class AbstractAnalyticalPropagator
state
- new intermediate state to considerforward
- if true, the intermediate state is valid for
propagations after itselfprotected void resetIntermediateState(SpacecraftState state, boolean forward, double epsilon, int maxIterations)
state
- new intermediate state to considerforward
- if true, the intermediate state is valid for
propagations after itselfepsilon
- convergence threshold for mean parameters conversionmaxIterations
- maximum iterations for mean parameters conversionpublic KeplerianOrbit propagateOrbit(AbsoluteDate date)
propagateOrbit
in class AbstractAnalyticalPropagator
date
- target date for the orbitpublic double getM2()
public double getMu()
public double[] getCk0()
public double getReferenceRadius()
public List<ParameterDriver> getParametersDrivers()
protected AbstractMatricesHarvester createHarvester(String stmName, RealMatrix initialStm, DoubleArrayDictionary initialJacobianColumns)
createHarvester
in class AbstractPropagator
stmName
- State Transition Matrix state nameinitialStm
- initial State Transition Matrix ∂Y/∂Y₀,
if null (which is the most frequent case), assumed to be 6x6 identityinitialJacobianColumns
- initial columns of the Jacobians matrix with respect to parameters,
if null or if some selected parameters are missing from the dictionary, the corresponding
initial column is assumed to be 0protected List<String> getJacobiansColumnsNames()
MatricesHarvester.getParametersJacobian(org.orekit.propagation.SpacecraftState)
.getJacobiansColumnsNames
in class AbstractAnalyticalPropagator
protected double getMass(AbsoluteDate date)
getMass
in class AbstractAnalyticalPropagator
date
- target date for the orbitCopyright © 2002-2022 CS GROUP. All rights reserved.