Class FieldKeplerianOrbit<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.orekit.orbits.FieldOrbit<T>
-
- org.orekit.orbits.FieldKeplerianOrbit<T>
-
- Type Parameters:
T
- type of the field elements
- All Implemented Interfaces:
PositionAngleBased
,FieldTimeShiftable<FieldOrbit<T>,T>
,FieldTimeStamped<T>
,TimeShiftable<FieldOrbit<T>>
,FieldPVCoordinatesProvider<T>
public class FieldKeplerianOrbit<T extends CalculusFieldElement<T>> extends FieldOrbit<T> implements PositionAngleBased
This class handles traditional Keplerian orbital parameters.The parameters used internally are the classical Keplerian elements:
a e i ω Ω v
where ω stands for the Perigee Argument, Ω stands for the Right Ascension of the Ascending Node and v stands for the true anomaly.This class supports hyperbolic orbits, using the convention that semi major axis is negative for such orbits (and of course eccentricity is greater than 1).
When orbit is either equatorial or circular, some Keplerian elements (more precisely ω and Ω) become ambiguous so this class should not be used for such orbits. For this reason,
equinoctial orbits
is the recommended way to represent orbits.The instance
KeplerianOrbit
is guaranteed to be immutable.- Since:
- 9.0
- Author:
- Luc Maisonobe, Guylaine Prat, Fabien Maussion, Véronique Pommier-Maurussane, Andrea Antolino
- See Also:
Orbit
,CircularOrbit
,CartesianOrbit
,EquinoctialOrbit
-
-
Constructor Summary
Constructors Constructor Description FieldKeplerianOrbit(Field<T> field, KeplerianOrbit op)
Constructor from Field and KeplerianOrbit.FieldKeplerianOrbit(Field<T> field, Orbit op)
Constructor from Field and Orbit.FieldKeplerianOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.FieldKeplerianOrbit(FieldPVCoordinates<T> FieldPVCoordinates, Frame frame, FieldAbsoluteDate<T> date, T mu)
Constructor from Cartesian parameters.FieldKeplerianOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, T mu)
Constructor from Cartesian parameters.FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu)
Creates a new instance.FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, PositionAngleType type, PositionAngleType cachedPositionAngleType, Frame frame, FieldAbsoluteDate<T> date, T mu)
Creates a new instance.FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, T aDot, T eDot, T iDot, T paDot, T raanDot, T anomalyDot, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu)
Creates a new instance.FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, T aDot, T eDot, T iDot, T paDot, T raanDot, T anomalyDot, PositionAngleType type, PositionAngleType cachedPositionAngleType, Frame frame, FieldAbsoluteDate<T> date, T mu)
Creates a new instance.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
addKeplerContribution(PositionAngleType type, T gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesprotected T[][]
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.protected T[][]
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.protected T[][]
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.T
getA()
Get the semi-major axis.T
getADot()
Get the semi-major axis derivative.T
getAnomaly(PositionAngleType type)
Get the anomaly.T
getAnomalyDot(PositionAngleType type)
Get the anomaly derivative.PositionAngleType
getCachedPositionAngleType()
Get the cachedPositionAngleType
.T
getE()
Get the eccentricity.T
getEccentricAnomaly()
Get the eccentric anomaly.T
getEccentricAnomalyDot()
Get the eccentric anomaly derivative.T
getEDot()
Get the eccentricity derivative.T
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.T
getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector derivative.T
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.T
getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector derivative.T
getHx()
Get the first component of the inclination vector.T
getHxDot()
Get the first component of the inclination vector derivative.T
getHy()
Get the second component of the inclination vector.T
getHyDot()
Get the second component of the inclination vector derivative.T
getI()
Get the inclination.T
getIDot()
Get the inclination derivative.T
getLE()
Get the eccentric longitude argument.T
getLEDot()
Get the eccentric longitude argument derivative.T
getLM()
Get the mean longitude argument.T
getLMDot()
Get the mean longitude argument derivative.T
getLv()
Get the true longitude argument.T
getLvDot()
Get the true longitude argument derivative.T
getMeanAnomaly()
Get the mean anomaly.T
getMeanAnomalyDot()
Get the mean anomaly derivative.T
getPerigeeArgument()
Get the perigee argument.T
getPerigeeArgumentDot()
Get the perigee argument derivative.T
getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.T
getRightAscensionOfAscendingNodeDot()
Get the right ascension of the ascending node derivative.T
getTrueAnomaly()
Get the true anomaly.T
getTrueAnomalyDot()
Get the true anomaly derivative.OrbitType
getType()
Get the orbit type.boolean
hasDerivatives()
Check if orbit includes derivatives.boolean
hasRates()
Tells whether the instance holds rates (first-order time derivatives) for dependent variables.protected FieldVector3D<T>
initPosition()
Compute the position coordinates from the canonical parameters.protected TimeStampedFieldPVCoordinates<T>
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.FieldKeplerianOrbit<T>
removeRates()
Create a new instance such thatPositionAngleBased.hasRates()
is false.FieldKeplerianOrbit<T>
shiftedBy(double dt)
Get a time-shifted instance.FieldKeplerianOrbit<T>
shiftedBy(T dt)
Get a time-shifted orbit.KeplerianOrbit
toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.String
toString()
Returns a string representation of this Keplerian parameters object.-
Methods inherited from class org.orekit.orbits.FieldOrbit
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getField, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMeanAnomalyDotWrtA, getMu, getOne, getPosition, getPosition, getPosition, getPVCoordinates, getPVCoordinates, getPVCoordinates, getZero, hasNonKeplerianAcceleration, isElliptical
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.orekit.time.FieldTimeStamped
durationFrom
-
-
-
-
Constructor Detail
-
FieldKeplerianOrbit
public FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, PositionAngleType type, PositionAngleType cachedPositionAngleType, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m), negative for hyperbolic orbitse
- eccentricity (positive or equal to 0)i
- inclination (rad)pa
- perigee argument (ω, rad)raan
- right ascension of ascending node (Ω, rad)anomaly
- mean, eccentric or true anomaly (rad)type
- type of anomalycachedPositionAngleType
- type of cached anomalyframe
- the frame in which the parameters are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
or a and e don't match for hyperbolic orbits, or v is out of range for hyperbolic orbits- Since:
- 12.1
-
FieldKeplerianOrbit
public FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m), negative for hyperbolic orbitse
- eccentricity (positive or equal to 0)i
- inclination (rad)pa
- perigee argument (ω, rad)raan
- right ascension of ascending node (Ω, rad)anomaly
- mean, eccentric or true anomaly (rad)type
- type of anomalyframe
- the frame in which the parameters are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
or a and e don't match for hyperbolic orbits, or v is out of range for hyperbolic orbits- Since:
- 12.1
-
FieldKeplerianOrbit
public FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, T aDot, T eDot, T iDot, T paDot, T raanDot, T anomalyDot, PositionAngleType type, PositionAngleType cachedPositionAngleType, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m), negative for hyperbolic orbitse
- eccentricity (positive or equal to 0)i
- inclination (rad)pa
- perigee argument (ω, rad)raan
- right ascension of ascending node (Ω, rad)anomaly
- mean, eccentric or true anomaly (rad)aDot
- semi-major axis derivative, null if unknown (m/s)eDot
- eccentricity derivative, null if unknowniDot
- inclination derivative, null if unknown (rad/s)paDot
- perigee argument derivative, null if unknown (rad/s)raanDot
- right ascension of ascending node derivative, null if unknown (rad/s)anomalyDot
- mean, eccentric or true anomaly derivative, null if unknown (rad/s)type
- type of anomalycachedPositionAngleType
- type of cached anomalyframe
- the frame in which the parameters are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
or a and e don't match for hyperbolic orbits, or v is out of range for hyperbolic orbits- Since:
- 12.1
-
FieldKeplerianOrbit
public FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, T aDot, T eDot, T iDot, T paDot, T raanDot, T anomalyDot, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m), negative for hyperbolic orbitse
- eccentricity (positive or equal to 0)i
- inclination (rad)pa
- perigee argument (ω, rad)raan
- right ascension of ascending node (Ω, rad)anomaly
- mean, eccentric or true anomaly (rad)aDot
- semi-major axis derivative, null if unknown (m/s)eDot
- eccentricity derivative, null if unknowniDot
- inclination derivative, null if unknown (rad/s)paDot
- perigee argument derivative, null if unknown (rad/s)raanDot
- right ascension of ascending node derivative, null if unknown (rad/s)anomalyDot
- mean, eccentric or true anomaly derivative, null if unknown (rad/s)type
- type of anomalyframe
- the frame in which the parameters are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
or a and e don't match for hyperbolic orbits, or v is out of range for hyperbolic orbits
-
FieldKeplerianOrbit
public FieldKeplerianOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, T mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
FieldPVCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(CalculusFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
pvCoordinates
- the PVCoordinates of the satelliteframe
- the frame in which are defined theFieldPVCoordinates
(must be apseudo-inertial frame
)mu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
-
FieldKeplerianOrbit
public FieldKeplerianOrbit(FieldPVCoordinates<T> FieldPVCoordinates, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
FieldPVCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(CalculusFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
FieldPVCoordinates
- the PVCoordinates of the satelliteframe
- the frame in which are defined theFieldPVCoordinates
(must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
-
FieldKeplerianOrbit
public FieldKeplerianOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.- Parameters:
op
- orbital parameters to copy
-
FieldKeplerianOrbit
public FieldKeplerianOrbit(Field<T> field, KeplerianOrbit op)
Constructor from Field and KeplerianOrbit.Build a FieldKeplerianOrbit from non-Field KeplerianOrbit.
- Parameters:
field
- CalculusField to base object onop
- non-field orbit with only "constant" terms- Since:
- 12.0
-
-
Method Detail
-
getType
public OrbitType getType()
Get the orbit type.- Specified by:
getType
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- orbit type
-
getA
public T getA()
Get the semi-major axis.Note that the semi-major axis is considered negative for hyperbolic orbits.
- Specified by:
getA
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- semi-major axis (m)
-
getADot
public T getADot()
Get the semi-major axis derivative.Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is null.
- Specified by:
getADot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- semi-major axis derivative (m/s)
-
getE
public T getE()
Get the eccentricity.- Specified by:
getE
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- eccentricity
-
getEDot
public T getEDot()
Get the eccentricity derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- eccentricity derivative
-
getI
public T getI()
Get the inclination.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getI
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- inclination (rad)
-
getIDot
public T getIDot()
Get the inclination derivative.- Specified by:
getIDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- inclination derivative (rad/s)
-
getPerigeeArgument
public T getPerigeeArgument()
Get the perigee argument.- Returns:
- perigee argument (rad)
-
getPerigeeArgumentDot
public T getPerigeeArgumentDot()
Get the perigee argument derivative.If the orbit was created without derivatives, the value returned is null.
- Returns:
- perigee argument derivative (rad/s)
-
getRightAscensionOfAscendingNode
public T getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.- Returns:
- right ascension of the ascending node (rad)
-
getRightAscensionOfAscendingNodeDot
public T getRightAscensionOfAscendingNodeDot()
Get the right ascension of the ascending node derivative.If the orbit was created without derivatives, the value returned is null.
- Returns:
- right ascension of the ascending node derivative (rad/s)
-
getTrueAnomaly
public T getTrueAnomaly()
Get the true anomaly.- Returns:
- true anomaly (rad)
-
getTrueAnomalyDot
public T getTrueAnomalyDot()
Get the true anomaly derivative.If the orbit was created without derivatives, the value returned is null.
- Returns:
- true anomaly derivative (rad/s)
-
getEccentricAnomaly
public T getEccentricAnomaly()
Get the eccentric anomaly.- Returns:
- eccentric anomaly (rad)
-
getEccentricAnomalyDot
public T getEccentricAnomalyDot()
Get the eccentric anomaly derivative.If the orbit was created without derivatives, the value returned is null.
- Returns:
- eccentric anomaly derivative (rad/s)
-
getMeanAnomaly
public T getMeanAnomaly()
Get the mean anomaly.- Returns:
- mean anomaly (rad)
-
getMeanAnomalyDot
public T getMeanAnomalyDot()
Get the mean anomaly derivative.If the orbit was created without derivatives, the value returned is null.
- Returns:
- mean anomaly derivative (rad/s)
-
getAnomaly
public T getAnomaly(PositionAngleType type)
Get the anomaly.- Parameters:
type
- type of the angle- Returns:
- anomaly (rad)
-
getAnomalyDot
public T getAnomalyDot(PositionAngleType type)
Get the anomaly derivative.If the orbit was created without derivatives, the value returned is null.
- Parameters:
type
- type of the angle- Returns:
- anomaly derivative (rad/s)
-
hasDerivatives
public boolean hasDerivatives()
Check if orbit includes derivatives.- Specified by:
hasDerivatives
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- true if orbit includes derivatives
- See Also:
FieldOrbit.getADot()
,FieldOrbit.getEquinoctialExDot()
,FieldOrbit.getEquinoctialEyDot()
,FieldOrbit.getHxDot()
,FieldOrbit.getHyDot()
,FieldOrbit.getLEDot()
,FieldOrbit.getLvDot()
,FieldOrbit.getLMDot()
,FieldOrbit.getEDot()
,FieldOrbit.getIDot()
-
getEquinoctialEx
public T getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEx
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector
-
getEquinoctialExDot
public T getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialExDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector derivative
-
getEquinoctialEy
public T getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector
-
getEquinoctialEyDot
public T getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialEyDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector derivative
-
getHx
public T getHx()
Get the first component of the inclination vector.- Specified by:
getHx
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the inclination vector
-
getHxDot
public T getHxDot()
Get the first component of the inclination vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getHxDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the inclination vector derivative
-
getHy
public T getHy()
Get the second component of the inclination vector.- Specified by:
getHy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the inclination vector
-
getHyDot
public T getHyDot()
Get the second component of the inclination vector derivative.- Specified by:
getHyDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the inclination vector derivative
-
getLv
public T getLv()
Get the true longitude argument.- Specified by:
getLv
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- v + ω + Ω true longitude argument (rad)
-
getLvDot
public T getLvDot()
Get the true longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLvDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(v + ω + Ω)/dt true longitude argument derivative (rad/s)
-
getLE
public T getLE()
Get the eccentric longitude argument.- Specified by:
getLE
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- E + ω + Ω eccentric longitude argument (rad)
-
getLEDot
public T getLEDot()
Get the eccentric longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLEDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(E + ω + Ω)/dt eccentric longitude argument derivative (rad/s)
-
getLM
public T getLM()
Get the mean longitude argument.- Specified by:
getLM
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- M + ω + Ω mean longitude argument (rad)
-
getLMDot
public T getLMDot()
Get the mean longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLMDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(M + ω + Ω)/dt mean longitude argument derivative (rad/s)
-
initPosition
protected FieldVector3D<T> initPosition()
Compute the position coordinates from the canonical parameters.- Specified by:
initPosition
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- computed position coordinates
-
initPVCoordinates
protected TimeStampedFieldPVCoordinates<T> initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.- Specified by:
initPVCoordinates
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- computed position/velocity coordinates
-
shiftedBy
public FieldKeplerianOrbit<T> shiftedBy(double dt)
Get a time-shifted instance.- Specified by:
shiftedBy
in interfaceTimeShiftable<T extends CalculusFieldElement<T>>
- Parameters:
dt
- time shift in seconds- Returns:
- a new instance, shifted with respect to instance (which is not changed)
-
shiftedBy
public FieldKeplerianOrbit<T> shiftedBy(T dt)
Get a time-shifted orbit.The orbit can be slightly shifted to close dates. This shift is based on a simple Keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
- Specified by:
shiftedBy
in interfaceFieldTimeShiftable<FieldOrbit<T extends CalculusFieldElement<T>>,T extends CalculusFieldElement<T>>
- Specified by:
shiftedBy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Parameters:
dt
- time shift in seconds- Returns:
- a new orbit, shifted with respect to the instance (which is immutable)
-
computeJacobianMeanWrtCartesian
protected T[][] computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianMeanWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianEccentricWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianEccentricWrtCartesian
protected T[][] computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianEccentricWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianTrueWrtCartesian
protected T[][] computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianTrueWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianEccentricWrtCartesian()
-
addKeplerContribution
public void addKeplerContribution(PositionAngleType type, T gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesThis method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
- Specified by:
addKeplerContribution
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Parameters:
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian part must be added to the array components, as the array may already contain some non-zero elements corresponding to non-Keplerian parts)
-
toString
public String toString()
Returns a string representation of this Keplerian parameters object.
-
getCachedPositionAngleType
public PositionAngleType getCachedPositionAngleType()
Get the cachedPositionAngleType
.- Specified by:
getCachedPositionAngleType
in interfacePositionAngleBased
- Returns:
- cached type of position angle
-
hasRates
public boolean hasRates()
Tells whether the instance holds rates (first-order time derivatives) for dependent variables.- Specified by:
hasRates
in interfacePositionAngleBased
- Returns:
- true if and only if holding rates
-
removeRates
public FieldKeplerianOrbit<T> removeRates()
Create a new instance such thatPositionAngleBased.hasRates()
is false.- Specified by:
removeRates
in interfacePositionAngleBased
- Returns:
- new object without rates
-
toOrbit
public KeplerianOrbit toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.- Specified by:
toOrbit
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- Orbit instance with same properties
-
-