Class FieldHansenTesseralLinear<T extends CalculusFieldElement<T>>

  • Type Parameters:
    T - type of the field elements

    public class FieldHansenTesseralLinear<T extends CalculusFieldElement<T>>
    extends Object
    Hansen coefficients K(t,n,s) for t!=0 and n < 0.

    Implements Collins 4-236 or Danielson 2.7.3-(9) for Hansen Coefficients and Collins 4-240 for derivatives. The recursions are transformed into composition of linear transformations to obtain the associated polynomials for coefficients and their derivatives - see Petre's paper

    Author:
    Petre Bazavan, Lucian Barbulescu, Bryan Cazabonne
    • Constructor Detail

      • FieldHansenTesseralLinear

        public FieldHansenTesseralLinear​(int nMax,
                                         int s,
                                         int j,
                                         int n0,
                                         int maxHansen,
                                         Field<T> field)
        Constructor.
        Parameters:
        nMax - the maximum (absolute) value of n parameter
        s - s parameter
        j - j parameter
        n0 - the minimum (absolute) value of n
        maxHansen - maximum power of the eccentricity to use in Hansen coefficient Kernel expansion.
        field - field used by default
    • Method Detail

      • computeInitValues

        public void computeInitValues​(T e2,
                                      T chi,
                                      T chi2)
        Compute the values for the first four coefficients and their derivatives by means of series.
        Parameters:
        e2 - e²
        chi - Χ
        chi2 - Χ²
      • getValue

        public T getValue​(int mnm1,
                          T chi)
        Compute the value of the Hansen coefficient Kj-n-1, s.
        Parameters:
        mnm1 - -n-1
        chi - χ
        Returns:
        the coefficient Kj-n-1, s
      • getDerivative

        public T getDerivative​(int mnm1,
                               T chi)
        Compute the value of the derivative dKj-n-1, s / de².
        Parameters:
        mnm1 - -n-1
        chi - χ
        Returns:
        the derivative dKj-n-1, s / de²