1   /* Copyright 2002-2024 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.utils;
18  
19  import org.hipparchus.analysis.interpolation.HermiteInterpolator;
20  import org.hipparchus.geometry.euclidean.threed.Rotation;
21  import org.hipparchus.geometry.euclidean.threed.RotationConvention;
22  import org.hipparchus.geometry.euclidean.threed.Vector3D;
23  import org.hipparchus.util.FastMath;
24  import org.hipparchus.util.MathArrays;
25  import org.orekit.errors.OrekitInternalError;
26  import org.orekit.time.AbsoluteDate;
27  import org.orekit.time.AbstractTimeInterpolator;
28  
29  import java.util.List;
30  
31  /**
32   * Class using Hermite interpolator to interpolate time stamped angular coordinates.
33   * <p>
34   * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation points
35   * (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's phenomenon</a>
36   * and numerical problems (including NaN appearing).
37   *
38   * @author Vincent Cucchietti
39   * @author Luc Maisonobe
40   * @see HermiteInterpolator
41   * @see TimeStampedAngularCoordinates
42   */
43  public class TimeStampedAngularCoordinatesHermiteInterpolator
44          extends AbstractTimeInterpolator<TimeStampedAngularCoordinates> {
45  
46      /** Filter for derivatives from the sample to use in interpolation. */
47      private final AngularDerivativesFilter filter;
48  
49      /**
50       * Constructor with :
51       * <ul>
52       *     <li>Default number of interpolation points of {@code DEFAULT_INTERPOLATION_POINTS}</li>
53       *     <li>Default extrapolation threshold value ({@code DEFAULT_EXTRAPOLATION_THRESHOLD_SEC} s)</li>
54       *     <li>Use of angular and first time derivative for attitude interpolation</li>
55       * </ul>
56       * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
57       * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
58       * phenomenon</a> and numerical problems (including NaN appearing).
59       */
60      public TimeStampedAngularCoordinatesHermiteInterpolator() {
61          this(DEFAULT_INTERPOLATION_POINTS);
62      }
63  
64      /**
65       * /** Constructor with :
66       * <ul>
67       *     <li>Default extrapolation threshold value ({@code DEFAULT_EXTRAPOLATION_THRESHOLD_SEC} s)</li>
68       *     <li>Use of angular and first time derivative for attitude interpolation</li>
69       * </ul>
70       * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
71       * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
72       * phenomenon</a> and numerical problems (including NaN appearing).
73       *
74       * @param interpolationPoints number of interpolation points
75       */
76      public TimeStampedAngularCoordinatesHermiteInterpolator(final int interpolationPoints) {
77          this(interpolationPoints, AngularDerivativesFilter.USE_RR);
78      }
79  
80      /**
81       * Constructor with :
82       * <ul>
83       *     <li>Default extrapolation threshold value ({@code DEFAULT_EXTRAPOLATION_THRESHOLD_SEC} s)</li>
84       * </ul>
85       * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
86       * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
87       * phenomenon</a> and numerical problems (including NaN appearing).
88       *
89       * @param interpolationPoints number of interpolation points
90       * @param filter filter for derivatives from the sample to use in interpolation
91       */
92      public TimeStampedAngularCoordinatesHermiteInterpolator(final int interpolationPoints,
93                                                              final AngularDerivativesFilter filter) {
94          this(interpolationPoints, DEFAULT_EXTRAPOLATION_THRESHOLD_SEC, filter);
95      }
96  
97      /**
98       * Constructor.
99       * <p>
100      * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
101      * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
102      * phenomenon</a> and numerical problems (including NaN appearing).
103      *
104      * @param interpolationPoints number of interpolation points
105      * @param extrapolationThreshold extrapolation threshold beyond which the propagation will fail
106      * @param filter filter for derivatives from the sample to use in interpolation
107      */
108     public TimeStampedAngularCoordinatesHermiteInterpolator(final int interpolationPoints,
109                                                             final double extrapolationThreshold,
110                                                             final AngularDerivativesFilter filter) {
111         super(interpolationPoints, extrapolationThreshold);
112         this.filter = filter;
113     }
114 
115     /** Get filter for derivatives from the sample to use in interpolation.
116      * @return filter for derivatives from the sample to use in interpolation
117      */
118     public AngularDerivativesFilter getFilter() {
119         return filter;
120     }
121 
122     /**
123      * {@inheritDoc}
124      * <p>
125      * The interpolated instance is created by polynomial Hermite interpolation on Rodrigues vector ensuring rotation rate
126      * remains the exact derivative of rotation.
127      * <p>
128      * This method is based on Sergei Tanygin's paper <a
129      * href="http://www.agi.com/resources/white-papers/attitude-interpolation">Attitude Interpolation</a>, changing the norm
130      * of the vector to match the modified Rodrigues vector as described in Malcolm D. Shuster's paper <a
131      * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A
132      * Survey of Attitude Representations</a>. This change avoids the singularity at π. There is still a singularity at 2π,
133      * which is handled by slightly offsetting all rotations when this singularity is detected. Another change is that the
134      * mean linear motion is first removed before interpolation and added back after interpolation. This allows to use
135      * interpolation even when the sample covers much more than one turn and even when sample points are separated by more
136      * than one turn.
137      * </p>
138      * <p>
139      * Note that even if first and second time derivatives (rotation rates and acceleration) from sample can be ignored, the
140      * interpolated instance always includes interpolated derivatives. This feature can be used explicitly to compute these
141      * derivatives when it would be too complex to compute them from an analytical formula: just compute a few sample points
142      * from the explicit formula and set the derivatives to zero in these sample points, then use interpolation to add
143      * derivatives consistent with the rotations.
144      */
145     @Override
146     protected TimeStampedAngularCoordinates interpolate(final InterpolationData interpolationData) {
147 
148         // Get date
149         final AbsoluteDate date = interpolationData.getInterpolationDate();
150 
151         // Get sample
152         final List<TimeStampedAngularCoordinates> sample = interpolationData.getNeighborList();
153 
154         // set up safety elements for 2π singularity avoidance
155         final double epsilon   = 2 * FastMath.PI / sample.size();
156         final double threshold = FastMath.min(-(1.0 - 1.0e-4), -FastMath.cos(epsilon / 4));
157 
158         // set up a linear model canceling mean rotation rate
159         final Vector3D meanRate;
160         Vector3D       sum = Vector3D.ZERO;
161         if (filter != AngularDerivativesFilter.USE_R) {
162             for (final TimeStampedAngularCoordinates datedAC : sample) {
163                 sum = sum.add(datedAC.getRotationRate());
164             }
165             meanRate = new Vector3D(1.0 / sample.size(), sum);
166         }
167         else {
168             TimeStampedAngularCoordinates previous = null;
169             for (final TimeStampedAngularCoordinates datedAC : sample) {
170                 if (previous != null) {
171                     sum = sum.add(TimeStampedAngularCoordinates.estimateRate(previous.getRotation(), datedAC.getRotation(),
172                                                                              datedAC.getDate()
173                                                                                     .durationFrom(previous.getDate())));
174                 }
175                 previous = datedAC;
176             }
177             meanRate = new Vector3D(1.0 / (sample.size() - 1), sum);
178         }
179         TimeStampedAngularCoordinates offset =
180                 new TimeStampedAngularCoordinates(date, Rotation.IDENTITY, meanRate, Vector3D.ZERO);
181 
182         boolean restart = true;
183         for (int i = 0; restart && i < sample.size() + 2; ++i) {
184 
185             // offset adaptation parameters
186             restart = false;
187 
188             // set up an interpolator taking derivatives into account
189             final HermiteInterpolator interpolator = new HermiteInterpolator();
190 
191             // add sample points
192             double   sign     = 1.0;
193             Rotation previous = Rotation.IDENTITY;
194 
195             for (final TimeStampedAngularCoordinates ac : sample) {
196 
197                 // remove linear offset from the current coordinates
198                 final double                        dt    = ac.getDate().durationFrom(date);
199                 final TimeStampedAngularCoordinates fixed = ac.subtractOffset(offset.shiftedBy(dt));
200 
201                 // make sure all interpolated points will be on the same branch
202                 final double dot = MathArrays.linearCombination(fixed.getRotation().getQ0(), previous.getQ0(),
203                                                                 fixed.getRotation().getQ1(), previous.getQ1(),
204                                                                 fixed.getRotation().getQ2(), previous.getQ2(),
205                                                                 fixed.getRotation().getQ3(), previous.getQ3());
206                 sign     = FastMath.copySign(1.0, dot * sign);
207                 previous = fixed.getRotation();
208 
209                 // check modified Rodrigues vector singularity
210                 if (fixed.getRotation().getQ0() * sign < threshold) {
211                     // the sample point is close to a modified Rodrigues vector singularity
212                     // we need to change the linear offset model to avoid this
213                     restart = true;
214                     break;
215                 }
216 
217                 final double[][] rodrigues = fixed.getModifiedRodrigues(sign);
218                 switch (filter) {
219                     case USE_RRA:
220                         // populate sample with rotation, rotation rate and acceleration data
221                         interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1], rodrigues[2]);
222                         break;
223                     case USE_RR:
224                         // populate sample with rotation and rotation rate data
225                         interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1]);
226                         break;
227                     case USE_R:
228                         // populate sample with rotation data only
229                         interpolator.addSamplePoint(dt, rodrigues[0]);
230                         break;
231                     default:
232                         // this should never happen
233                         throw new OrekitInternalError(null);
234                 }
235             }
236 
237             if (restart) {
238                 // interpolation failed, some intermediate rotation was too close to 2π
239                 // we need to offset all rotations to avoid the singularity
240                 offset = offset.addOffset(new AngularCoordinates(new Rotation(Vector3D.PLUS_I,
241                                                                               epsilon,
242                                                                               RotationConvention.VECTOR_OPERATOR),
243                                                                  Vector3D.ZERO, Vector3D.ZERO));
244             }
245             else {
246                 // interpolation succeeded with the current offset
247                 final double[][]         p  = interpolator.derivatives(0.0, 2);
248                 final AngularCoordinates ac = AngularCoordinates.createFromModifiedRodrigues(p);
249                 return new TimeStampedAngularCoordinates(offset.getDate(),
250                                                          ac.getRotation(),
251                                                          ac.getRotationRate(),
252                                                          ac.getRotationAcceleration()).addOffset(offset);
253             }
254 
255         }
256 
257         // this should never happen
258         throw new OrekitInternalError(null);
259     }
260 }