1   /* Copyright 2002-2024 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.utils;
18  
19  import org.hipparchus.analysis.interpolation.HermiteInterpolator;
20  import org.hipparchus.geometry.euclidean.threed.Vector3D;
21  import org.orekit.errors.OrekitInternalError;
22  import org.orekit.time.AbsoluteDate;
23  import org.orekit.time.AbstractTimeInterpolator;
24  
25  import java.util.stream.Stream;
26  
27  /**
28   * Class using a Hermite interpolator to interpolate time stamped position-velocity-acceleration coordinates.
29   * <p>
30   * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation points
31   * (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's phenomenon</a>
32   * and numerical problems (including NaN appearing).
33   *
34   * @author Luc Maisonobe
35   * @author Vincent Cucchietti
36   * @see HermiteInterpolator
37   * @see TimeStampedPVCoordinates
38   */
39  public class TimeStampedPVCoordinatesHermiteInterpolator extends AbstractTimeInterpolator<TimeStampedPVCoordinates> {
40  
41      /** Filter for derivatives from the sample to use in interpolation. */
42      private final CartesianDerivativesFilter filter;
43  
44      /**
45       * Constructor with :
46       * <ul>
47       *     <li>Default number of interpolation points of {@code DEFAULT_INTERPOLATION_POINTS}</li>
48       *     <li>Default extrapolation threshold value ({@code DEFAULT_EXTRAPOLATION_THRESHOLD_SEC} s)</li>
49       *     <li>Use of position and both time derivatives for attitude interpolation</li>
50       * </ul>
51       * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
52       * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
53       * phenomenon</a> and numerical problems (including NaN appearing).
54       */
55      public TimeStampedPVCoordinatesHermiteInterpolator() {
56          this(DEFAULT_INTERPOLATION_POINTS);
57      }
58  
59      /**
60       * Constructor with :
61       * <ul>
62       *     <li>Default extrapolation threshold value ({@code DEFAULT_EXTRAPOLATION_THRESHOLD_SEC} s)</li>
63       *     <li>Use of position and both time derivatives for attitude interpolation</li>
64       * </ul>
65       * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
66       * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
67       * phenomenon</a> and numerical problems (including NaN appearing).
68       *
69       * @param interpolationPoints number of interpolation points
70       */
71      public TimeStampedPVCoordinatesHermiteInterpolator(final int interpolationPoints) {
72          this(interpolationPoints, CartesianDerivativesFilter.USE_PVA);
73      }
74  
75      /**
76       * Constructor with :
77       * <ul>
78       *     <li>Default extrapolation threshold value ({@code DEFAULT_EXTRAPOLATION_THRESHOLD_SEC} s)</li>
79       * </ul>
80       * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
81       * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
82       * phenomenon</a> and numerical problems (including NaN appearing).
83       *
84       * @param interpolationPoints number of interpolation points
85       * @param filter filter for derivatives from the sample to use in interpolation
86       */
87      public TimeStampedPVCoordinatesHermiteInterpolator(final int interpolationPoints,
88                                                         final CartesianDerivativesFilter filter) {
89  
90          this(interpolationPoints, DEFAULT_EXTRAPOLATION_THRESHOLD_SEC, filter);
91      }
92  
93      /**
94       * Constructor.
95       * <p>
96       * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
97       * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
98       * phenomenon</a> and numerical problems (including NaN appearing).
99       *
100      * @param interpolationPoints number of interpolation points
101      * @param extrapolationThreshold extrapolation threshold beyond which the propagation will fail
102      * @param filter filter for derivatives from the sample to use in interpolation
103      */
104     public TimeStampedPVCoordinatesHermiteInterpolator(final int interpolationPoints,
105                                                        final double extrapolationThreshold,
106                                                        final CartesianDerivativesFilter filter) {
107         super(interpolationPoints, extrapolationThreshold);
108         this.filter = filter;
109     }
110 
111     /** Get filter for derivatives from the sample to use in interpolation.
112      * @return filter for derivatives from the sample to use in interpolation
113      */
114     public CartesianDerivativesFilter getFilter() {
115         return filter;
116     }
117 
118     /**
119      * {@inheritDoc}
120      * <p>
121      * The interpolated instance is created by polynomial Hermite interpolation ensuring velocity remains the exact
122      * derivative of position.
123      * <p>
124      * Note that even if first time derivatives (velocities) from sample can be ignored, the interpolated instance always
125      * includes interpolated derivatives. This feature can be used explicitly to compute these derivatives when it would be
126      * too complex to compute them from an analytical formula: just compute a few sample points from the explicit formula and
127      * set the derivatives to zero in these sample points, then use interpolation to add derivatives consistent with the
128      * positions.
129      */
130     @Override
131     protected TimeStampedPVCoordinates interpolate(final InterpolationData interpolationData) {
132 
133         // Get date
134         final AbsoluteDate date = interpolationData.getInterpolationDate();
135 
136         // Convert sample to stream
137         final Stream<TimeStampedPVCoordinates> sample = interpolationData.getNeighborList().stream();
138 
139         // Set up an interpolator taking derivatives into account
140         final HermiteInterpolator interpolator = new HermiteInterpolator();
141 
142         // Add sample points
143         switch (filter) {
144             case USE_P:
145                 // populate sample with position data, ignoring velocity
146                 sample.forEach(pv -> {
147                     final Vector3D position = pv.getPosition();
148                     interpolator.addSamplePoint(pv.getDate().durationFrom(date),
149                                                 position.toArray());
150                 });
151                 break;
152             case USE_PV:
153                 // populate sample with position and velocity data
154                 sample.forEach(pv -> {
155                     final Vector3D position = pv.getPosition();
156                     final Vector3D velocity = pv.getVelocity();
157                     interpolator.addSamplePoint(pv.getDate().durationFrom(date),
158                                                 position.toArray(), velocity.toArray());
159                 });
160                 break;
161             case USE_PVA:
162                 // populate sample with position, velocity and acceleration data
163                 sample.forEach(pv -> {
164                     final Vector3D position     = pv.getPosition();
165                     final Vector3D velocity     = pv.getVelocity();
166                     final Vector3D acceleration = pv.getAcceleration();
167                     interpolator.addSamplePoint(pv.getDate().durationFrom(date),
168                                                 position.toArray(), velocity.toArray(), acceleration.toArray());
169                 });
170                 break;
171             default:
172                 // this should never happen
173                 throw new OrekitInternalError(null);
174         }
175 
176         // Interpolate
177         final double[][] pva = interpolator.derivatives(0.0, 2);
178 
179         // Build a new interpolated instance
180         return new TimeStampedPVCoordinates(date, new Vector3D(pva[0]), new Vector3D(pva[1]), new Vector3D(pva[2]));
181     }
182 }