1 /* Copyright 2002-2024 CS GROUP 2 * Licensed to CS GROUP (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.frames; 18 19 import java.io.Serializable; 20 import java.util.function.BiFunction; 21 import java.util.function.Function; 22 23 import org.hipparchus.CalculusFieldElement; 24 import org.hipparchus.FieldElement; 25 import org.orekit.errors.OrekitIllegalArgumentException; 26 import org.orekit.errors.OrekitMessages; 27 import org.orekit.time.AbsoluteDate; 28 import org.orekit.time.FieldAbsoluteDate; 29 30 31 /** Tridimensional references frames class. 32 * 33 * <h2> Frame Presentation </h2> 34 * <p>This class is the base class for all frames in OREKIT. The frames are 35 * linked together in a tree with some specific frame chosen as the root of the tree. 36 * Each frame is defined by {@link Transform transforms} combining any number 37 * of translations and rotations from a reference frame which is its 38 * parent frame in the tree structure.</p> 39 * <p>When we say a {@link Transform transform} t is <em>from frame<sub>A</sub> 40 * to frame<sub>B</sub></em>, we mean that if the coordinates of some absolute 41 * vector (say the direction of a distant star for example) has coordinates 42 * u<sub>A</sub> in frame<sub>A</sub> and u<sub>B</sub> in frame<sub>B</sub>, 43 * then u<sub>B</sub>={@link 44 * Transform#transformVector(org.hipparchus.geometry.euclidean.threed.Vector3D) 45 * t.transformVector(u<sub>A</sub>)}. 46 * <p>The transforms may be constant or varying, depending on the implementation of 47 * the {@link TransformProvider transform provider} used to define the frame. For simple 48 * fixed transforms, using {@link FixedTransformProvider} is sufficient. For varying 49 * transforms (time-dependent or telemetry-based for example), it may be useful to define 50 * specific implementations of {@link TransformProvider transform provider}.</p> 51 * 52 * @author Guylaine Prat 53 * @author Luc Maisonobe 54 * @author Pascal Parraud 55 */ 56 public class Frame implements Serializable { 57 58 /** Serializable UID. */ 59 private static final long serialVersionUID = -6981146543760234087L; 60 61 /** Parent frame (only the root frame doesn't have a parent). */ 62 private final Frame parent; 63 64 /** Depth of the frame with respect to tree root. */ 65 private final int depth; 66 67 /** Provider for transform from parent frame to instance. */ 68 private final TransformProvider transformProvider; 69 70 /** Instance name. */ 71 private final String name; 72 73 /** Indicator for pseudo-inertial frames. */ 74 private final boolean pseudoInertial; 75 76 /** Private constructor used only for the root frame. 77 * @param name name of the frame 78 * @param pseudoInertial true if frame is considered pseudo-inertial 79 * (i.e. suitable for propagating orbit) 80 */ 81 private Frame(final String name, final boolean pseudoInertial) { 82 parent = null; 83 depth = 0; 84 transformProvider = new FixedTransformProvider(Transform.IDENTITY); 85 this.name = name; 86 this.pseudoInertial = pseudoInertial; 87 } 88 89 /** Build a non-inertial frame from its transform with respect to its parent. 90 * <p>calling this constructor is equivalent to call 91 * <code>{link {@link #Frame(Frame, Transform, String, boolean) 92 * Frame(parent, transform, name, false)}</code>.</p> 93 * @param parent parent frame (must be non-null) 94 * @param transform transform from parent frame to instance 95 * @param name name of the frame 96 * @exception IllegalArgumentException if the parent frame is null 97 */ 98 public Frame(final Frame parent, final Transform transform, final String name) 99 throws IllegalArgumentException { 100 this(parent, transform, name, false); 101 } 102 103 /** Build a non-inertial frame from its transform with respect to its parent. 104 * <p>calling this constructor is equivalent to call 105 * <code>{link {@link #Frame(Frame, Transform, String, boolean) 106 * Frame(parent, transform, name, false)}</code>.</p> 107 * @param parent parent frame (must be non-null) 108 * @param transformProvider provider for transform from parent frame to instance 109 * @param name name of the frame 110 * @exception IllegalArgumentException if the parent frame is null 111 */ 112 public Frame(final Frame parent, final TransformProvider transformProvider, final String name) 113 throws IllegalArgumentException { 114 this(parent, transformProvider, name, false); 115 } 116 117 /** Build a frame from its transform with respect to its parent. 118 * <p>The convention for the transform is that it is from parent 119 * frame to instance. This means that the two following frames 120 * are similar:</p> 121 * <pre> 122 * Frame frame1 = new Frame(FramesFactory.getGCRF(), new Transform(t1, t2)); 123 * Frame frame2 = new Frame(new Frame(FramesFactory.getGCRF(), t1), t2); 124 * </pre> 125 * @param parent parent frame (must be non-null) 126 * @param transform transform from parent frame to instance 127 * @param name name of the frame 128 * @param pseudoInertial true if frame is considered pseudo-inertial 129 * (i.e. suitable for propagating orbit) 130 * @exception IllegalArgumentException if the parent frame is null 131 */ 132 public Frame(final Frame parent, final Transform transform, final String name, 133 final boolean pseudoInertial) 134 throws IllegalArgumentException { 135 this(parent, new FixedTransformProvider(transform), name, pseudoInertial); 136 } 137 138 /** Build a frame from its transform with respect to its parent. 139 * <p>The convention for the transform is that it is from parent 140 * frame to instance. This means that the two following frames 141 * are similar:</p> 142 * <pre> 143 * Frame frame1 = new Frame(FramesFactory.getGCRF(), new Transform(t1, t2)); 144 * Frame frame2 = new Frame(new Frame(FramesFactory.getGCRF(), t1), t2); 145 * </pre> 146 * @param parent parent frame (must be non-null) 147 * @param transformProvider provider for transform from parent frame to instance 148 * @param name name of the frame 149 * @param pseudoInertial true if frame is considered pseudo-inertial 150 * (i.e. suitable for propagating orbit) 151 * @exception IllegalArgumentException if the parent frame is null 152 */ 153 public Frame(final Frame parent, final TransformProvider transformProvider, final String name, 154 final boolean pseudoInertial) 155 throws IllegalArgumentException { 156 157 if (parent == null) { 158 throw new OrekitIllegalArgumentException(OrekitMessages.NULL_PARENT_FOR_FRAME, name); 159 } 160 this.parent = parent; 161 this.depth = parent.depth + 1; 162 this.transformProvider = transformProvider; 163 this.name = name; 164 this.pseudoInertial = pseudoInertial; 165 166 } 167 168 /** Get the name. 169 * @return the name 170 */ 171 public String getName() { 172 return this.name; 173 } 174 175 /** Check if the frame is pseudo-inertial. 176 * <p>Pseudo-inertial frames are frames that do have a linear motion and 177 * either do not rotate or rotate at a very low rate resulting in 178 * neglectible inertial forces. This means they are suitable for orbit 179 * definition and propagation using Newtonian mechanics. Frames that are 180 * <em>not</em> pseudo-inertial are <em>not</em> suitable for orbit 181 * definition and propagation.</p> 182 * @return true if frame is pseudo-inertial 183 */ 184 public boolean isPseudoInertial() { 185 return pseudoInertial; 186 } 187 188 /** New definition of the java.util toString() method. 189 * @return the name 190 */ 191 public String toString() { 192 return this.name; 193 } 194 195 /** Get the parent frame. 196 * @return parent frame 197 */ 198 public Frame getParent() { 199 return parent; 200 } 201 202 /** Get the depth of the frame. 203 * <p> 204 * The depth of a frame is the number of parents frame between 205 * it and the frames tree root. It is 0 for the root frame, and 206 * the depth of a frame is the depth of its parent frame plus one. 207 * </p> 208 * @return depth of the frame 209 */ 210 public int getDepth() { 211 return depth; 212 } 213 214 /** Get the n<sup>th</sup> ancestor of the frame. 215 * @param n index of the ancestor (0 is the instance, 1 is its parent, 216 * 2 is the parent of its parent...) 217 * @return n<sup>th</sup> ancestor of the frame (must be between 0 218 * and the depth of the frame) 219 * @exception IllegalArgumentException if n is larger than the depth 220 * of the instance 221 */ 222 public Frame getAncestor(final int n) throws IllegalArgumentException { 223 224 // safety check 225 if (n > depth) { 226 throw new OrekitIllegalArgumentException(OrekitMessages.FRAME_NO_NTH_ANCESTOR, 227 name, depth, n); 228 } 229 230 // go upward to find ancestor 231 Frame current = this; 232 for (int i = 0; i < n; ++i) { 233 current = current.parent; 234 } 235 236 return current; 237 238 } 239 240 /** Get the transform from the instance to another frame. 241 * @param destination destination frame to which we want to transform vectors 242 * @param date the date (can be null if it is sure than no date dependent frame is used) 243 * @return transform from the instance to the destination frame 244 */ 245 public Transform getTransformTo(final Frame destination, final AbsoluteDate date) { 246 return getTransformTo( 247 destination, 248 Transform.IDENTITY, 249 frame -> frame.getTransformProvider().getTransform(date), 250 (t1, t2) -> new Transform(date, t1, t2), 251 Transform::getInverse); 252 } 253 254 /** Get the transform from the instance to another frame. 255 * @param destination destination frame to which we want to transform vectors 256 * @param date the date (<em>must</em> be non-null, which is a more stringent condition 257 * * than in {@link #getTransformTo(Frame, FieldAbsoluteDate)}) 258 * @param <T> the type of the field elements 259 * @return transform from the instance to the destination frame 260 */ 261 public <T extends CalculusFieldElement<T>> FieldTransform<T> getTransformTo(final Frame destination, final FieldAbsoluteDate<T> date) { 262 263 return getTransformTo(destination, 264 FieldTransform.getIdentity(date.getField()), 265 frame -> frame.getTransformProvider().getTransform(date), 266 (t1, t2) -> new FieldTransform<>(date, t1, t2), 267 FieldTransform::getInverse); 268 } 269 270 /** 271 * Get the kinematic portion of the transform from the instance to another 272 * frame. The returned transform is kinematic in the sense that it includes 273 * translations and rotations, with rates, but cannot transform an acceleration vector. 274 * 275 * <p>This method is often more performant than {@link 276 * #getTransformTo(Frame, AbsoluteDate)} when accelerations are not needed. 277 * 278 * @param destination destination frame to which we want to transform 279 * vectors 280 * @param date the date (can be null if it is sure than no date 281 * dependent frame is used) 282 * @return kinematic transform from the instance to the destination frame 283 * @since 12.1 284 */ 285 public KinematicTransform getKinematicTransformTo(final Frame destination, final AbsoluteDate date) { 286 return getTransformTo( 287 destination, 288 KinematicTransform.getIdentity(), 289 frame -> frame.getTransformProvider().getKinematicTransform(date), 290 (t1, t2) -> KinematicTransform.compose(date, t1, t2), 291 KinematicTransform::getInverse); 292 } 293 294 /** 295 * Get the static portion of the transform from the instance to another 296 * frame. The returned transform is static in the sense that it includes 297 * translations and rotations, but not rates. 298 * 299 * <p>This method is often more performant than {@link 300 * #getTransformTo(Frame, AbsoluteDate)} when rates are not needed. 301 * 302 * @param destination destination frame to which we want to transform 303 * vectors 304 * @param date the date (can be null if it is sure than no date 305 * dependent frame is used) 306 * @return static transform from the instance to the destination frame 307 * @since 11.2 308 */ 309 public StaticTransform getStaticTransformTo(final Frame destination, 310 final AbsoluteDate date) { 311 return getTransformTo( 312 destination, 313 StaticTransform.getIdentity(), 314 frame -> frame.getTransformProvider().getStaticTransform(date), 315 (t1, t2) -> StaticTransform.compose(date, t1, t2), 316 StaticTransform::getInverse); 317 } 318 319 /** 320 * Get the static portion of the transform from the instance to another 321 * frame. The returned transform is static in the sense that it includes 322 * translations and rotations, but not rates. 323 * 324 * <p>This method is often more performant than {@link 325 * #getTransformTo(Frame, FieldAbsoluteDate)} when rates are not needed. 326 * 327 * <p>A first check is made on the FieldAbsoluteDate because "fielded" transforms have low-performance.<br> 328 * The date field is checked with {@link FieldElement#isZero()}.<br> 329 * If true, the un-fielded version of the transform computation is used. 330 * 331 * @param <T> type of the elements 332 * @param destination destination frame to which we want to transform 333 * vectors 334 * @param date the date (<em>must</em> be non-null, which is a more stringent condition 335 * than in {@link #getStaticTransformTo(Frame, AbsoluteDate)}) 336 * @return static transform from the instance to the destination frame 337 * @since 12.0 338 */ 339 public <T extends CalculusFieldElement<T>> FieldStaticTransform<T> getStaticTransformTo(final Frame destination, 340 final FieldAbsoluteDate<T> date) { 341 if (date.hasZeroField()) { 342 // If date field is Zero, then use the un-fielded version for performances 343 return FieldStaticTransform.of(date, getStaticTransformTo(destination, date.toAbsoluteDate())); 344 345 } else { 346 // Use classic fielded function 347 return getTransformTo(destination, 348 FieldStaticTransform.getIdentity(date.getField()), 349 frame -> frame.getTransformProvider().getStaticTransform(date), 350 (t1, t2) -> FieldStaticTransform.compose(date, t1, t2), 351 FieldStaticTransform::getInverse); 352 } 353 } 354 355 /** 356 * Get the kinematic portion of the transform from the instance to another 357 * frame. The returned transform is kinematic in the sense that it includes 358 * translations and rotations, with rates, but cannot transform an acceleration vector. 359 * 360 * <p>This method is often more performant than {@link 361 * #getTransformTo(Frame, AbsoluteDate)} when accelerations are not needed. 362 * @param <T> Type of transform returned. 363 * @param destination destination frame to which we want to transform 364 * vectors 365 * @param date the date (<em>must</em> be non-null, which is a more stringent condition 366 * * than in {@link #getKinematicTransformTo(Frame, AbsoluteDate)}) 367 * @return kinematic transform from the instance to the destination frame 368 * @since 12.1 369 */ 370 public <T extends CalculusFieldElement<T>> FieldKinematicTransform<T> getKinematicTransformTo(final Frame destination, 371 final FieldAbsoluteDate<T> date) { 372 if (date.hasZeroField()) { 373 // If date field is Zero, then use the un-fielded version for performances 374 final KinematicTransform kinematicTransform = getKinematicTransformTo(destination, date.toAbsoluteDate()); 375 return FieldKinematicTransform.of(date.getField(), kinematicTransform); 376 377 } else { 378 // Use classic fielded function 379 return getTransformTo(destination, 380 FieldKinematicTransform.getIdentity(date.getField()), 381 frame -> frame.getTransformProvider().getKinematicTransform(date), 382 (t1, t2) -> FieldKinematicTransform.compose(date, t1, t2), 383 FieldKinematicTransform::getInverse); 384 } 385 } 386 387 /** 388 * Generic get transform method that builds the transform from {@code this} 389 * to {@code destination}. 390 * 391 * @param destination destination frame to which we want to transform 392 * vectors 393 * @param identity transform of the given type. 394 * @param getTransform method to get a transform from a frame. 395 * @param compose method to combine two transforms. 396 * @param inverse method to invert a transform. 397 * @param <T> Type of transform returned. 398 * @return composite transform. 399 */ 400 private <T> T getTransformTo(final Frame destination, 401 final T identity, 402 final Function<Frame, T> getTransform, 403 final BiFunction<T, T, T> compose, 404 final Function<T, T> inverse) { 405 406 if (this == destination) { 407 // shortcut for special case that may be frequent 408 return identity; 409 } 410 411 // common ancestor to both frames in the frames tree 412 final Frame common = findCommon(this, destination); 413 414 // transform from common to instance 415 T commonToInstance = identity; 416 for (Frame frame = this; frame != common; frame = frame.parent) { 417 commonToInstance = compose.apply(getTransform.apply(frame), commonToInstance); 418 } 419 420 // transform from destination up to common 421 T commonToDestination = identity; 422 for (Frame frame = destination; frame != common; frame = frame.parent) { 423 commonToDestination = compose.apply(getTransform.apply(frame), commonToDestination); 424 } 425 426 // transform from instance to destination via common 427 return compose.apply(inverse.apply(commonToInstance), commonToDestination); 428 429 } 430 431 /** Get the provider for transform from parent frame to instance. 432 * @return provider for transform from parent frame to instance 433 */ 434 public TransformProvider getTransformProvider() { 435 return transformProvider; 436 } 437 438 /** Find the deepest common ancestor of two frames in the frames tree. 439 * @param from origin frame 440 * @param to destination frame 441 * @return an ancestor frame of both <code>from</code> and <code>to</code> 442 */ 443 private static Frame findCommon(final Frame from, final Frame to) { 444 445 // select deepest frames that could be the common ancestor 446 Frame currentF = from.depth > to.depth ? from.getAncestor(from.depth - to.depth) : from; 447 Frame currentT = from.depth > to.depth ? to : to.getAncestor(to.depth - from.depth); 448 449 // go upward until we find a match 450 while (currentF != currentT) { 451 currentF = currentF.parent; 452 currentT = currentT.parent; 453 } 454 455 return currentF; 456 457 } 458 459 /** Determine if a Frame is a child of another one. 460 * @param potentialAncestor supposed ancestor frame 461 * @return true if the potentialAncestor belongs to the 462 * path from instance to the root frame, excluding itself 463 */ 464 public boolean isChildOf(final Frame potentialAncestor) { 465 if (depth <= potentialAncestor.depth) { 466 return false; 467 } 468 return getAncestor(depth - potentialAncestor.depth) == potentialAncestor; 469 } 470 471 /** Get the unique root frame. 472 * @return the unique instance of the root frame 473 */ 474 public static Frame getRoot() { 475 return LazyRootHolder.INSTANCE; 476 } 477 478 /** Get a new version of the instance, frozen with respect to a reference frame. 479 * <p> 480 * Freezing a frame consist in computing its position and orientation with respect 481 * to another frame at some freezing date and fixing them so they do not depend 482 * on time anymore. This means the frozen frame is fixed with respect to the 483 * reference frame. 484 * </p> 485 * <p> 486 * One typical use of this method is to compute an inertial launch reference frame 487 * by freezing a {@link TopocentricFrame topocentric frame} at launch date 488 * with respect to an inertial frame. Another use is to freeze an equinox-related 489 * celestial frame at a reference epoch date. 490 * </p> 491 * <p> 492 * Only the frame returned by this method is frozen, the instance by itself 493 * is not affected by calling this method and still moves freely. 494 * </p> 495 * @param reference frame with respect to which the instance will be frozen 496 * @param freezingDate freezing date 497 * @param frozenName name of the frozen frame 498 * @return a frozen version of the instance 499 */ 500 public Frame getFrozenFrame(final Frame reference, final AbsoluteDate freezingDate, 501 final String frozenName) { 502 return new Frame(reference, reference.getTransformTo(this, freezingDate).freeze(), 503 frozenName, reference.isPseudoInertial()); 504 } 505 506 // We use the Initialization on demand holder idiom to store 507 // the singletons, as it is both thread-safe, efficient (no 508 // synchronization) and works with all versions of java. 509 510 /** Holder for the root frame singleton. */ 511 private static class LazyRootHolder { 512 513 /** Unique instance. */ 514 private static final Frame INSTANCE = new Frame(Predefined.GCRF.getName(), true) { 515 516 /** Serializable UID. */ 517 private static final long serialVersionUID = -2654403496396721543L; 518 519 /** Replace the instance with a data transfer object for serialization. 520 * <p> 521 * This intermediate class serializes nothing. 522 * </p> 523 * @return data transfer object that will be serialized 524 */ 525 private Object writeReplace() { 526 return new DataTransferObject(); 527 } 528 529 }; 530 531 /** Private constructor. 532 * <p>This class is a utility class, it should neither have a public 533 * nor a default constructor. This private constructor prevents 534 * the compiler from generating one automatically.</p> 535 */ 536 private LazyRootHolder() { 537 } 538 539 } 540 541 /** Internal class used only for serialization. */ 542 private static class DataTransferObject implements Serializable { 543 544 /** Serializable UID. */ 545 private static final long serialVersionUID = 4067764035816491212L; 546 547 /** Simple constructor. 548 */ 549 private DataTransferObject() { 550 } 551 552 /** Replace the deserialized data transfer object with a {@link FactoryManagedFrame}. 553 * @return replacement {@link FactoryManagedFrame} 554 */ 555 private Object readResolve() { 556 return getRoot(); 557 } 558 559 } 560 561 }