1 /* Copyright 2002-2024 CS GROUP 2 * Licensed to CS GROUP (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.utils; 18 19 import org.hipparchus.analysis.differentiation.Derivative; 20 import org.hipparchus.geometry.euclidean.threed.FieldRotation; 21 import org.hipparchus.geometry.euclidean.threed.Rotation; 22 import org.hipparchus.geometry.euclidean.threed.RotationConvention; 23 import org.hipparchus.geometry.euclidean.threed.Vector3D; 24 import org.orekit.time.AbsoluteDate; 25 import org.orekit.time.TimeStamped; 26 27 /** {@link TimeStamped time-stamped} version of {@link AngularCoordinates}. 28 * <p>Instances of this class are guaranteed to be immutable.</p> 29 * @author Luc Maisonobe 30 * @since 7.0 31 */ 32 public class TimeStampedAngularCoordinates extends AngularCoordinates implements TimeStamped { 33 34 /** Serializable UID. */ 35 private static final long serialVersionUID = 20140723L; 36 37 /** The date. */ 38 private final AbsoluteDate date; 39 40 /** Builds a rotation/rotation rate pair. 41 * @param date coordinates date 42 * @param rotation rotation 43 * @param rotationRate rotation rate Ω (rad/s) 44 * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²) 45 */ 46 public TimeStampedAngularCoordinates(final AbsoluteDate date, 47 final Rotation rotation, 48 final Vector3D rotationRate, 49 final Vector3D rotationAcceleration) { 50 super(rotation, rotationRate, rotationAcceleration); 51 this.date = date; 52 } 53 54 /** Build the rotation that transforms a pair of pv coordinates into another pair. 55 56 * <p><em>WARNING</em>! This method requires much more stringent assumptions on 57 * its parameters than the similar {@link Rotation#Rotation(Vector3D, Vector3D, 58 * Vector3D, Vector3D) constructor} from the {@link Rotation Rotation} class. 59 * As far as the Rotation constructor is concerned, the {@code v₂} vector from 60 * the second pair can be slightly misaligned. The Rotation constructor will 61 * compensate for this misalignment and create a rotation that ensure {@code 62 * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT 63 * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be 64 * preserved, this constructor works <em>only</em> if the two pairs are fully 65 * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code 66 * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt 67 * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p> 68 69 * @param date coordinates date 70 * @param u1 first vector of the origin pair 71 * @param u2 second vector of the origin pair 72 * @param v1 desired image of u1 by the rotation 73 * @param v2 desired image of u2 by the rotation 74 * @param tolerance relative tolerance factor used to check singularities 75 */ 76 public TimeStampedAngularCoordinates(final AbsoluteDate date, 77 final PVCoordinates u1, final PVCoordinates u2, 78 final PVCoordinates v1, final PVCoordinates v2, 79 final double tolerance) { 80 super(u1, u2, v1, v2, tolerance); 81 this.date = date; 82 } 83 84 /** Build one of the rotations that transform one pv coordinates into another one. 85 86 * <p>Except for a possible scale factor, if the instance were 87 * applied to the vector u it will produce the vector v. There is an 88 * infinite number of such rotations, this constructor choose the 89 * one with the smallest associated angle (i.e. the one whose axis 90 * is orthogonal to the (u, v) plane). If u and v are collinear, an 91 * arbitrary rotation axis is chosen.</p> 92 93 * @param date coordinates date 94 * @param u origin vector 95 * @param v desired image of u by the rotation 96 */ 97 public TimeStampedAngularCoordinates(final AbsoluteDate date, 98 final PVCoordinates u, final PVCoordinates v) { 99 super(u, v); 100 this.date = date; 101 } 102 103 /** Builds a TimeStampedAngularCoordinates from a {@link FieldRotation}<{@link Derivative}>. 104 * <p> 105 * The rotation components must have time as their only derivation parameter and 106 * have consistent derivation orders. 107 * </p> 108 * @param date coordinates date 109 * @param r rotation with time-derivatives embedded within the coordinates 110 * @param <U> type of the derivative 111 */ 112 public <U extends Derivative<U>>TimeStampedAngularCoordinates(final AbsoluteDate date, 113 final FieldRotation<U> r) { 114 super(r); 115 this.date = date; 116 } 117 118 /** {@inheritDoc} */ 119 public AbsoluteDate getDate() { 120 return date; 121 } 122 123 /** Revert a rotation/rotation rate pair. 124 * Build a pair which reverse the effect of another pair. 125 * @return a new pair whose effect is the reverse of the effect 126 * of the instance 127 */ 128 public TimeStampedAngularCoordinates revert() { 129 return new TimeStampedAngularCoordinates(date, 130 getRotation().revert(), 131 getRotation().applyInverseTo(getRotationRate().negate()), 132 getRotation().applyInverseTo(getRotationAcceleration().negate())); 133 } 134 135 /** Get a time-shifted state. 136 * <p> 137 * The state can be slightly shifted to close dates. This shift is based on 138 * a simple linear model. It is <em>not</em> intended as a replacement for 139 * proper attitude propagation but should be sufficient for either small 140 * time shifts or coarse accuracy. 141 * </p> 142 * @param dt time shift in seconds 143 * @return a new state, shifted with respect to the instance (which is immutable) 144 */ 145 public TimeStampedAngularCoordinates shiftedBy(final double dt) { 146 final AngularCoordinates sac = super.shiftedBy(dt); 147 return new TimeStampedAngularCoordinates(date.shiftedBy(dt), 148 sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration()); 149 150 } 151 152 /** Add an offset from the instance. 153 * <p> 154 * We consider here that the offset rotation is applied first and the 155 * instance is applied afterward. Note that angular coordinates do <em>not</em> 156 * commute under this operation, i.e. {@code a.addOffset(b)} and {@code 157 * b.addOffset(a)} lead to <em>different</em> results in most cases. 158 * </p> 159 * <p> 160 * The two methods {@link #addOffset(AngularCoordinates) addOffset} and 161 * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed 162 * so that round trip applications are possible. This means that both {@code 163 * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code 164 * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1. 165 * </p> 166 * @param offset offset to subtract 167 * @return new instance, with offset subtracted 168 * @see #subtractOffset(AngularCoordinates) 169 */ 170 @Override 171 public TimeStampedAngularCoordinates addOffset(final AngularCoordinates offset) { 172 final Vector3D rOmega = getRotation().applyTo(offset.getRotationRate()); 173 final Vector3D rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration()); 174 return new TimeStampedAngularCoordinates(date, 175 getRotation().compose(offset.getRotation(), RotationConvention.VECTOR_OPERATOR), 176 getRotationRate().add(rOmega), 177 new Vector3D( 1.0, getRotationAcceleration(), 178 1.0, rOmegaDot, 179 -1.0, Vector3D.crossProduct(getRotationRate(), rOmega))); 180 } 181 182 /** Subtract an offset from the instance. 183 * <p> 184 * We consider here that the offset rotation is applied first and the 185 * instance is applied afterward. Note that angular coordinates do <em>not</em> 186 * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code 187 * b.subtractOffset(a)} lead to <em>different</em> results in most cases. 188 * </p> 189 * <p> 190 * The two methods {@link #addOffset(AngularCoordinates) addOffset} and 191 * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed 192 * so that round trip applications are possible. This means that both {@code 193 * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code 194 * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1. 195 * </p> 196 * @param offset offset to subtract 197 * @return new instance, with offset subtracted 198 * @see #addOffset(AngularCoordinates) 199 */ 200 @Override 201 public TimeStampedAngularCoordinates subtractOffset(final AngularCoordinates offset) { 202 return addOffset(offset.revert()); 203 } 204 205 }