1 /* Copyright 2002-2019 CS Systèmes d'Information 2 * Licensed to CS Systèmes d'Information (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.data; 18 19 import java.io.BufferedReader; 20 import java.io.IOException; 21 import java.io.InputStream; 22 import java.io.InputStreamReader; 23 import java.util.Arrays; 24 import java.util.HashMap; 25 import java.util.Map; 26 import java.util.regex.Matcher; 27 import java.util.regex.Pattern; 28 29 import org.hipparchus.exception.DummyLocalizable; 30 import org.hipparchus.util.FastMath; 31 import org.hipparchus.util.Precision; 32 import org.orekit.errors.OrekitException; 33 import org.orekit.errors.OrekitMessages; 34 35 /** 36 * Parser for {@link PoissonSeries Poisson series} files. 37 * <p> 38 * A Poisson series is composed of a time polynomial part and a non-polynomial 39 * part which consist in summation series. The {@link SeriesTerm series terms} 40 * are harmonic functions (combination of sines and cosines) of polynomial 41 * <em>arguments</em>. The polynomial arguments are combinations of luni-solar or 42 * planetary {@link BodiesElements elements}. 43 * </p> 44 * <p> 45 * The Poisson series files from IERS have various formats, with or without 46 * polynomial part, with or without planetary components, with or without 47 * period column, with terms of increasing degrees either in dedicated columns 48 * or in successive sections of the file ... This class attempts to read all the 49 * commonly found formats, by specifying the columns of interest. 50 * </p> 51 * <p> 52 * The handling of increasing degrees terms (i.e. sin, cos, t sin, t cos, t^2 sin, 53 * t^2 cos ...) is done as follows. 54 * </p> 55 * <ul> 56 * <li>user must specify pairs of columns to be extracted at each line, 57 * in increasing degree order</li> 58 * <li>negative columns indices correspond to inexistent values that will be 59 * replaced by 0.0)</li> 60 * <li>file may provide section headers to specify a degree, which is added 61 * to the current column degree</li> 62 * </ul> 63 * <p> 64 * A file from an old convention, like table 5.1 in IERS conventions 1996, uses 65 * separate columns for degree 0 and degree 1, and uses only sine for nutation in 66 * longitude and cosine for nutation in obliquity. It reads as follows: 67 * </p> 68 * <pre> 69 * ∆ψ = Σ (Ai+A'it) sin(ARGUMENT), ∆ε = Σ (Bi+B'it) cos(ARGUMENT) 70 * 71 * MULTIPLIERS OF PERIOD LONGITUDE OBLIQUITY 72 * l l' F D Om days Ai A'i Bi B'i 73 * 74 * 0 0 0 0 1 -6798.4 -171996 -174.2 92025 8.9 75 * 0 0 2 -2 2 182.6 -13187 -1.6 5736 -3.1 76 * 0 0 2 0 2 13.7 -2274 -0.2 977 -0.5 77 * 0 0 0 0 2 -3399.2 2062 0.2 -895 0.5 78 * </pre> 79 * <p> 80 * In order to parse the nutation in longitude from the previous table, the 81 * following settings should be used: 82 * </p> 83 * <ul> 84 * <li>totalColumns = 10 (see {@link #PoissonSeriesParser(int)})</li> 85 * <li>firstDelaunay = 1 (see {@link #withFirstDelaunay(int)})</li> 86 * <li>no calls to {@link #withFirstPlanetary(int)} as there are no planetary columns in this table</li> 87 * <li>sinCosColumns = 7, -1 for degree 0 for Ai (see {@link #withSinCos(int, int, double, int, double)})</li> 88 * <li>sinCosColumns = 8, -1 for degree 1 for A'i (see {@link #withSinCos(int, int, double, int, double)})</li> 89 * </ul> 90 * <p> 91 * In order to parse the nutation in obliquity from the previous table, the 92 * following settings should be used: 93 * </p> 94 * <ul> 95 * <li>totalColumns = 10 (see {@link #PoissonSeriesParser(int)})</li> 96 * <li>firstDelaunay = 1 (see {@link #withFirstDelaunay(int)})</li> 97 * <li>no calls to {@link #withFirstPlanetary(int)} as there are no planetary columns in this table</li> 98 * <li>sinCosColumns = -1, 9 for degree 0 for Bi (see {@link #withSinCos(int, int, double, int, double)})</li> 99 * <li>sinCosColumns = -1, 10 for degree 1 for B'i (see {@link #withSinCos(int, int, double, int, double)})</li> 100 * </ul> 101 * <p> 102 * A file from a recent convention, like table 5.3a in IERS conventions 2010, uses 103 * only two columns for sin and cos, and separate degrees in successive sections with 104 * dedicated headers. It reads as follows: 105 * </p> 106 * <pre> 107 * --------------------------------------------------------------------------------------------------- 108 * 109 * (unit microarcsecond; cut-off: 0.1 microarcsecond) 110 * (ARG being for various combination of the fundamental arguments of the nutation theory) 111 * 112 * Sum_i[A_i * sin(ARG) + A"_i * cos(ARG)] 113 * 114 * + Sum_i[A'_i * sin(ARG) + A"'_i * cos(ARG)] * t (see Chapter 5, Eq. (35)) 115 * 116 * The Table below provides the values for A_i and A"_i (j=0) and then A'_i and A"'_i (j=1) 117 * 118 * The expressions for the fundamental arguments appearing in columns 4 to 8 (luni-solar part) 119 * and in columns 9 to 17 (planetary part) are those of the IERS Conventions 2003 120 * 121 * ---------------------------------------------------------------------------------------------------------- 122 * j = 0 Number of terms = 1320 123 * ---------------------------------------------------------------------------------------------------------- 124 * i A_i A"_i l l' F D Om L_Me L_Ve L_E L_Ma L_J L_Sa L_U L_Ne p_A 125 * ---------------------------------------------------------------------------------------------------------- 126 * 1 -17206424.18 3338.60 0 0 0 0 1 0 0 0 0 0 0 0 0 0 127 * 2 -1317091.22 -1369.60 0 0 2 -2 2 0 0 0 0 0 0 0 0 0 128 * 3 -227641.81 279.60 0 0 2 0 2 0 0 0 0 0 0 0 0 0 129 * 4 207455.40 -69.80 0 0 0 0 2 0 0 0 0 0 0 0 0 0 130 * 5 147587.70 1181.70 0 1 0 0 0 0 0 0 0 0 0 0 0 0 131 * 132 * ... 133 * 134 * 1319 -0.10 0.00 0 0 0 0 0 1 0 -3 0 0 0 0 0 -2 135 * 1320 -0.10 0.00 0 0 0 0 0 0 0 1 0 1 -2 0 0 0 136 * 137 * -------------------------------------------------------------------------------------------------------------- 138 * j = 1 Number of terms = 38 139 * -------------------------------------------------------------------------------------------------------------- 140 * i A'_i A"'_i l l' F D Om L_Me L_Ve L_E L_Ma L_J L_Sa L_U L_Ne p_A 141 * -------------------------------------------------------------------------------------------------------------- 142 * 1321 -17418.82 2.89 0 0 0 0 1 0 0 0 0 0 0 0 0 0 143 * 1322 -363.71 -1.50 0 1 0 0 0 0 0 0 0 0 0 0 0 0 144 * 1323 -163.84 1.20 0 0 2 -2 2 0 0 0 0 0 0 0 0 0 145 * 1324 122.74 0.20 0 1 2 -2 2 0 0 0 0 0 0 0 0 0 146 * </pre> 147 * <p> 148 * In order to parse the nutation in longitude from the previous table, the 149 * following settings should be used: 150 * </p> 151 * <ul> 152 * <li>totalColumns = 17 (see {@link #PoissonSeriesParser(int)})</li> 153 * <li>firstDelaunay = 4 (see {@link #withFirstDelaunay(int)})</li> 154 * <li>firstPlanetary = 9 (see {@link #withFirstPlanetary(int)})</li> 155 * <li>sinCosColumns = 2,3 (we specify only degree 0, so when we read 156 * section j = 0 we read degree 0, when we read section j = 1 we read 157 * degree 1, see {@link #withSinCos(int, int, double, int, double)} ...)</li> 158 * </ul> 159 * <p> 160 * A file from a recent convention, like table 6.5a in IERS conventions 2010, contains 161 * both Doodson arguments (τ, s, h, p, N', ps), Doodson numbers and Delaunay parameters. 162 * In this case, the coefficients for the Delaunay parameters must be <em>subtracted</em> 163 * from the τ = GMST + π tide parameter, so the signs in the files must be reversed 164 * in order to match the Doodson arguments and Doodson numbers. This is done automatically 165 * (and consistency is checked) only when the {@link #withDoodson(int, int)} method is 166 * called at parser configuration time. Some other files use the γ = GMST + π tide parameter 167 * rather than Doodson τ argument and the coefficients for the Delaunay parameters must be 168 * <em>added</em> to the γ parameter, so no sign reversal is performed. In order to avoid 169 * ambiguity as the two cases are incompatible with each other, trying to add a configuration 170 * for τ by calling {@link #withDoodson(int, int)} and to also add a configuration for γ by 171 * calling {@link #withGamma(int)} triggers an exception. 172 * </p> 173 * <p>The table 6.5a file also contains a column for the waves names (the Darwin's symbol) 174 * which may be empty, so it must be identified explicitly by calling {@link 175 * #withOptionalColumn(int)}. The 6.5a table reads as follows: 176 * </p> 177 * <pre> 178 * The in-phase (ip) amplitudes (A₁ δkfR Hf) and the out-of-phase (op) amplitudes (A₁ δkfI Hf) 179 * of the corrections for frequency dependence of k₂₁⁽⁰⁾, taking the nominal value k₂₁ for the 180 * diurnal tides as (0.29830 − i 0.00144). Units: 10⁻¹² . The entries for δkfR and δkfI are in 181 * units of 10⁻⁵. Multipliers of the Doodson arguments identifying the tidal terms are given, 182 * as also those of the Delaunay variables characterizing the nutations produced by these 183 * terms. 184 * 185 * Name deg/hr Doodson τ s h p N' ps l l' F D Ω δkfR δkfI Amp. Amp. 186 * No. /10−5 /10−5 (ip) (op) 187 * 2Q₁ 12.85429 125,755 1 -3 0 2 0 0 2 0 2 0 2 -29 3 -0.1 0.0 188 * σ₁ 12.92714 127,555 1 -3 2 0 0 0 0 0 2 2 2 -30 3 -0.1 0.0 189 * 13.39645 135,645 1 -2 0 1 -1 0 1 0 2 0 1 -45 5 -0.1 0.0 190 * Q₁ 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -46 5 -0.7 0.1 191 * ρ₁ 13.47151 137,455 1 -2 2 -1 0 0 -1 0 2 2 2 -49 5 -0.1 0.0 192 * </pre> 193 * <ul> 194 * <li>totalColumns = 18 (see {@link #PoissonSeriesParser(int)})</li> 195 * <li>optionalColumn = 1 (see {@link #withOptionalColumn(int)})</li> 196 * <li>firstDoodson, Doodson number = 4, 3 (see {@link #withDoodson(int, int)})</li> 197 * <li>firstDelaunay = 10 (see {@link #withFirstDelaunay(int)})</li> 198 * <li>sinCosColumns = 17, 18, see {@link #withSinCos(int, int, double, int, double)} ...)</li> 199 * </ul> 200 * <p> 201 * Our parsing algorithm involves adding the section degree from the "j = 0, 1, 2 ..." header 202 * to the column degree. A side effect of this algorithm is that it is theoretically possible 203 * to mix both formats and have for example degree two term appear as degree 2 column in section 204 * j=0 and as degree 1 column in section j=1 and as degree 0 column in section j=2. This case 205 * is not expected to be encountered in practice. The real files use either several columns 206 * <em>or</em> several sections, but not both at the same time. 207 * </p> 208 * 209 * @author Luc Maisonobe 210 * @see SeriesTerm 211 * @see PolynomialNutation 212 * @since 6.1 213 */ 214 public class PoissonSeriesParser { 215 216 /** Default pattern for fields with unknown type (non-space characters). */ 217 private static final String UNKNOWN_TYPE_PATTERN = "\\S+"; 218 219 /** Pattern for optional fields (either nothing or non-space characters). */ 220 private static final String OPTIONAL_FIELD_PATTERN = "\\S*"; 221 222 /** Pattern for fields with integer type. */ 223 private static final String INTEGER_TYPE_PATTERN = "[-+]?\\p{Digit}+"; 224 225 /** Pattern for fields with real type. */ 226 private static final String REAL_TYPE_PATTERN = "[-+]?(?:(?:\\p{Digit}+(?:\\.\\p{Digit}*)?)|(?:\\.\\p{Digit}+))(?:[eE][-+]?\\p{Digit}+)?"; 227 228 /** Pattern for fields with Doodson number. */ 229 private static final String DOODSON_TYPE_PATTERN = "\\p{Digit}{2,3}[.,]\\p{Digit}{3}"; 230 231 /** Parser for the polynomial part. */ 232 private final PolynomialParser polynomialParser; 233 234 /** Fields patterns. */ 235 private final String[] fieldsPatterns; 236 237 /** Optional column (counting from 1). */ 238 private final int optional; 239 240 /** Column of the γ = GMST + π tide multiplier (counting from 1). */ 241 private final int gamma; 242 243 /** Column of the first Doodson multiplier (counting from 1). */ 244 private final int firstDoodson; 245 246 /** Column of the Doodson number (counting from 1). */ 247 private final int doodson; 248 249 /** Column of the first Delaunay multiplier (counting from 1). */ 250 private final int firstDelaunay; 251 252 /** Column of the first planetary multiplier (counting from 1). */ 253 private final int firstPlanetary; 254 255 /** columns of the sine and cosine coefficients for successive degrees. 256 * <p> 257 * The ordering is: sin, cos, t sin, t cos, t^2 sin, t^2 cos ... 258 * </p> 259 */ 260 private final int[] sinCosColumns; 261 262 /** Multiplicative factors to use for various columns. */ 263 private final double[] sinCosFactors; 264 265 /** Build a parser for a Poisson series from an IERS table file. 266 * @param polynomialParser polynomial parser to use 267 * @param fieldsPatterns patterns for fields 268 * @param optional optional column 269 * @param gamma column of the GMST tide multiplier 270 * @param firstDoodson column of the first Doodson multiplier 271 * @param doodson column of the Doodson number 272 * @param firstDelaunay column of the first Delaunay multiplier 273 * @param firstPlanetary column of the first planetary multiplier 274 * @param sinCosColumns columns of the sine and cosine coefficients 275 * @param factors multiplicative factors to use for various columns 276 */ 277 private PoissonSeriesParser(final PolynomialParser polynomialParser, 278 final String[] fieldsPatterns, final int optional, 279 final int gamma, final int firstDoodson, 280 final int doodson, final int firstDelaunay, 281 final int firstPlanetary, final int[] sinCosColumns, 282 final double[] factors) { 283 this.polynomialParser = polynomialParser; 284 this.fieldsPatterns = fieldsPatterns; 285 this.optional = optional; 286 this.gamma = gamma; 287 this.firstDoodson = firstDoodson; 288 this.doodson = doodson; 289 this.firstDelaunay = firstDelaunay; 290 this.firstPlanetary = firstPlanetary; 291 this.sinCosColumns = sinCosColumns; 292 this.sinCosFactors = factors; 293 } 294 295 /** Build a parser for a Poisson series from an IERS table file. 296 * @param totalColumns total number of columns in the non-polynomial sections 297 */ 298 public PoissonSeriesParser(final int totalColumns) { 299 this(null, createInitialFieldsPattern(totalColumns), -1, 300 -1, -1, -1, -1, -1, new int[0], new double[0]); 301 } 302 303 /** Create an array with only non-space fields patterns. 304 * @param totalColumns total number of columns 305 * @return a new fields pattern array 306 */ 307 private static String[] createInitialFieldsPattern(final int totalColumns) { 308 final String[] patterns = new String[totalColumns]; 309 setPatterns(patterns, 1, totalColumns, UNKNOWN_TYPE_PATTERN); 310 return patterns; 311 } 312 313 /** Set fields patterns. 314 * @param array fields pattern array to modify 315 * @param first first column to set (counting from 1), do nothing if non-positive 316 * @param count number of columns to set 317 * @param pattern pattern to use 318 */ 319 private static void setPatterns(final String[] array, final int first, final int count, 320 final String pattern) { 321 if (first > 0) { 322 Arrays.fill(array, first - 1, first - 1 + count, pattern); 323 } 324 } 325 326 /** Set up polynomial part parsing. 327 * @param freeVariable name of the free variable in the polynomial part 328 * @param unit default unit for polynomial, if not explicit within the file 329 * @return a new parser, with polynomial parser updated 330 */ 331 public PoissonSeriesParser withPolynomialPart(final char freeVariable, final PolynomialParser.Unit unit) { 332 return new PoissonSeriesParser(new PolynomialParser(freeVariable, unit), fieldsPatterns, optional, 333 gamma, firstDoodson, doodson, firstDelaunay, 334 firstPlanetary, sinCosColumns, sinCosFactors); 335 } 336 337 /** Set up optional column. 338 * <p> 339 * Optional columns typically appears in tides-related files, as some waves have 340 * specific names (χ₁, M₂, ...) and other waves don't have names and hence are 341 * replaced by spaces in the corresponding file line. 342 * </p> 343 * <p> 344 * At most one column may be optional. 345 * </p> 346 * @param column optional column (counting from 1) 347 * @return a new parser, with updated columns settings 348 */ 349 public PoissonSeriesParser withOptionalColumn(final int column) { 350 351 // update the fields pattern to expect 1 optional field at the right index 352 final String[] newFieldsPatterns = fieldsPatterns.clone(); 353 setPatterns(newFieldsPatterns, optional, 1, UNKNOWN_TYPE_PATTERN); 354 setPatterns(newFieldsPatterns, column, 1, OPTIONAL_FIELD_PATTERN); 355 356 return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, column, 357 gamma, firstDoodson, doodson, firstDelaunay, 358 firstPlanetary, sinCosColumns, sinCosFactors); 359 360 } 361 362 /** Set up column of GMST tide multiplier. 363 * @param column column of the GMST tide multiplier (counting from 1) 364 * @return a new parser, with updated columns settings 365 * @see #withDoodson(int, int) 366 */ 367 public PoissonSeriesParser withGamma(final int column) { 368 369 // check we don't try to have both τ and γ configured at the same time 370 if (firstDoodson > 0 && column > 0) { 371 throw new OrekitException(OrekitMessages.CANNOT_PARSE_BOTH_TAU_AND_GAMMA); 372 } 373 374 // update the fields pattern to expect 1 integer at the right index 375 final String[] newFieldsPatterns = fieldsPatterns.clone(); 376 setPatterns(newFieldsPatterns, gamma, 1, UNKNOWN_TYPE_PATTERN); 377 setPatterns(newFieldsPatterns, column, 1, INTEGER_TYPE_PATTERN); 378 379 return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, optional, 380 column, firstDoodson, doodson, firstDelaunay, 381 firstPlanetary, sinCosColumns, sinCosFactors); 382 383 } 384 385 /** Set up columns for Doodson multipliers and Doodson number. 386 * @param firstMultiplierColumn column of the first Doodson multiplier which 387 * corresponds to τ (counting from 1) 388 * @param numberColumn column of the Doodson number (counting from 1) 389 * @return a new parser, with updated columns settings 390 * @see #withGamma(int) 391 * @see #withFirstDelaunay(int) 392 */ 393 public PoissonSeriesParser withDoodson(final int firstMultiplierColumn, final int numberColumn) { 394 395 // check we don't try to have both τ and γ configured at the same time 396 if (gamma > 0 && firstMultiplierColumn > 0) { 397 throw new OrekitException(OrekitMessages.CANNOT_PARSE_BOTH_TAU_AND_GAMMA); 398 } 399 400 final String[] newFieldsPatterns = fieldsPatterns.clone(); 401 402 // update the fields pattern to expect 6 integers at the right indices 403 setPatterns(newFieldsPatterns, firstDoodson, 6, UNKNOWN_TYPE_PATTERN); 404 setPatterns(newFieldsPatterns, firstMultiplierColumn, 6, INTEGER_TYPE_PATTERN); 405 406 // update the fields pattern to expect 1 Doodson number at the right index 407 setPatterns(newFieldsPatterns, doodson, 1, UNKNOWN_TYPE_PATTERN); 408 setPatterns(newFieldsPatterns, numberColumn, 1, DOODSON_TYPE_PATTERN); 409 410 return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, optional, 411 gamma, firstMultiplierColumn, numberColumn, firstDelaunay, 412 firstPlanetary, sinCosColumns, sinCosFactors); 413 414 } 415 416 /** Set up first column of Delaunay multiplier. 417 * @param firstColumn column of the first Delaunay multiplier (counting from 1) 418 * @return a new parser, with updated columns settings 419 */ 420 public PoissonSeriesParser withFirstDelaunay(final int firstColumn) { 421 422 // update the fields pattern to expect 5 integers at the right indices 423 final String[] newFieldsPatterns = fieldsPatterns.clone(); 424 setPatterns(newFieldsPatterns, firstDelaunay, 5, UNKNOWN_TYPE_PATTERN); 425 setPatterns(newFieldsPatterns, firstColumn, 5, INTEGER_TYPE_PATTERN); 426 427 return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, optional, 428 gamma, firstDoodson, doodson, firstColumn, 429 firstPlanetary, sinCosColumns, sinCosFactors); 430 431 } 432 433 /** Set up first column of planetary multiplier. 434 * @param firstColumn column of the first planetary multiplier (counting from 1) 435 * @return a new parser, with updated columns settings 436 */ 437 public PoissonSeriesParser withFirstPlanetary(final int firstColumn) { 438 439 // update the fields pattern to expect 9 integers at the right indices 440 final String[] newFieldsPatterns = fieldsPatterns.clone(); 441 setPatterns(newFieldsPatterns, firstPlanetary, 9, UNKNOWN_TYPE_PATTERN); 442 setPatterns(newFieldsPatterns, firstColumn, 9, INTEGER_TYPE_PATTERN); 443 444 return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, optional, 445 gamma, firstDoodson, doodson, firstDelaunay, 446 firstColumn, sinCosColumns, sinCosFactors); 447 448 } 449 450 /** Set up columns of the sine and cosine coefficients. 451 * @param degree degree to set up 452 * @param sinColumn column of the sine coefficient for t<sup>degree</sup> counting from 1 453 * (may be -1 if there are no sine coefficients) 454 * @param sinFactor multiplicative factor for the sine coefficient 455 * @param cosColumn column of the cosine coefficient for t<sup>degree</sup> counting from 1 456 * (may be -1 if there are no cosine coefficients) 457 * @param cosFactor multiplicative factor for the cosine coefficient 458 * @return a new parser, with updated columns settings 459 */ 460 public PoissonSeriesParser withSinCos(final int degree, 461 final int sinColumn, final double sinFactor, 462 final int cosColumn, final double cosFactor) { 463 464 // update the sin/cos columns array 465 final int maxDegree = FastMath.max(degree, sinCosColumns.length / 2 - 1); 466 final int[] newSinCosColumns = new int[2 * (maxDegree + 1)]; 467 Arrays.fill(newSinCosColumns, -1); 468 System.arraycopy(sinCosColumns, 0, newSinCosColumns, 0, sinCosColumns.length); 469 newSinCosColumns[2 * degree] = sinColumn; 470 newSinCosColumns[2 * degree + 1] = cosColumn; 471 472 final double[] newSinCosFactors = new double[2 * (maxDegree + 1)]; 473 Arrays.fill(newSinCosFactors, Double.NaN); 474 System.arraycopy(sinCosFactors, 0, newSinCosFactors, 0, sinCosFactors.length); 475 newSinCosFactors[2 * degree] = sinFactor; 476 newSinCosFactors[2 * degree + 1] = cosFactor; 477 478 // update the fields pattern to expect real numbers at the right indices 479 final String[] newFieldsPatterns = fieldsPatterns.clone(); 480 if (2 * degree < sinCosColumns.length) { 481 setPatterns(newFieldsPatterns, sinCosColumns[2 * degree], 1, UNKNOWN_TYPE_PATTERN); 482 } 483 setPatterns(newFieldsPatterns, sinColumn, 1, REAL_TYPE_PATTERN); 484 if (2 * degree + 1 < sinCosColumns.length) { 485 setPatterns(newFieldsPatterns, sinCosColumns[2 * degree + 1], 1, UNKNOWN_TYPE_PATTERN); 486 } 487 setPatterns(newFieldsPatterns, cosColumn, 1, REAL_TYPE_PATTERN); 488 489 return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, optional, 490 gamma, firstDoodson, doodson, firstDelaunay, 491 firstPlanetary, newSinCosColumns, newSinCosFactors); 492 493 } 494 495 /** Parse a stream. 496 * @param stream stream containing the IERS table 497 * @param name name of the resource file (for error messages only) 498 * @return parsed Poisson series 499 */ 500 public PoissonSeries parse(final InputStream stream, final String name) { 501 502 if (stream == null) { 503 throw new OrekitException(OrekitMessages.UNABLE_TO_FIND_FILE, name); 504 } 505 506 // the degrees section header should read something like: 507 // j = 0 Nb of terms = 1306 508 // or something like: 509 // j = 0 Number of terms = 1037 510 final Pattern degreeSectionHeaderPattern = 511 Pattern.compile("^\\p{Space}*j\\p{Space}*=\\p{Space}*(\\p{Digit}+)" + 512 "[\\p{Alpha}\\p{Space}]+=\\p{Space}*(\\p{Digit}+)\\p{Space}*$"); 513 514 // regular lines are simply a space separated list of numbers 515 final StringBuilder builder = new StringBuilder("^\\p{Space}*"); 516 for (int i = 0; i < fieldsPatterns.length; ++i) { 517 builder.append("("); 518 builder.append(fieldsPatterns[i]); 519 builder.append(")"); 520 builder.append((i < fieldsPatterns.length - 1) ? "\\p{Space}+" : "\\p{Space}*$"); 521 } 522 final Pattern regularLinePattern = Pattern.compile(builder.toString()); 523 524 try { 525 526 // setup the reader 527 final BufferedReader reader = new BufferedReader(new InputStreamReader(stream, "UTF-8")); 528 int lineNumber = 0; 529 int expectedIndex = -1; 530 int nTerms = -1; 531 int count = 0; 532 int degree = 0; 533 534 // prepare the container for the parsed data 535 PolynomialNutation polynomial; 536 if (polynomialParser == null) { 537 // we don't expect any polynomial, we directly set the zero polynomial 538 polynomial = new PolynomialNutation(new double[0]); 539 } else { 540 // the dedicated parser will fill in the polynomial later 541 polynomial = null; 542 } 543 final Map<Long, SeriesTerm> series = new HashMap<Long, SeriesTerm>(); 544 545 for (String line = reader.readLine(); line != null; line = reader.readLine()) { 546 547 // replace unicode minus sign ('−') by regular hyphen ('-') for parsing 548 // such unicode characters occur in tables that are copy-pasted from PDF files 549 line = line.replace('\u2212', '-'); 550 ++lineNumber; 551 552 final Matcher regularMatcher = regularLinePattern.matcher(line); 553 if (regularMatcher.matches()) { 554 // we have found a regular data line 555 556 if (expectedIndex > 0) { 557 // we are in a file were terms are numbered, we check the index 558 if (Integer.parseInt(regularMatcher.group(1)) != expectedIndex) { 559 throw new OrekitException(OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE, 560 lineNumber, name, regularMatcher.group()); 561 } 562 } 563 564 // get the Doodson multipliers as well as the Doodson number 565 final int cTau = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson)); 566 final int cS = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson + 1)); 567 final int cH = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson + 2)); 568 final int cP = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson + 3)); 569 final int cNprime = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson + 4)); 570 final int cPs = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson + 5)); 571 final int nDoodson = (doodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(doodson).replaceAll("[.,]", "")); 572 573 // get the tide multiplier 574 int cGamma = (gamma < 0) ? 0 : Integer.parseInt(regularMatcher.group(gamma)); 575 576 // get the Delaunay multipliers 577 int cL = Integer.parseInt(regularMatcher.group(firstDelaunay)); 578 int cLPrime = Integer.parseInt(regularMatcher.group(firstDelaunay + 1)); 579 int cF = Integer.parseInt(regularMatcher.group(firstDelaunay + 2)); 580 int cD = Integer.parseInt(regularMatcher.group(firstDelaunay + 3)); 581 int cOmega = Integer.parseInt(regularMatcher.group(firstDelaunay + 4)); 582 583 // get the planetary multipliers 584 final int cMe = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary)); 585 final int cVe = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 1)); 586 final int cE = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 2)); 587 final int cMa = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 3)); 588 final int cJu = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 4)); 589 final int cSa = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 5)); 590 final int cUr = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 6)); 591 final int cNe = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 7)); 592 final int cPa = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 8)); 593 594 if (nDoodson > 0) { 595 596 // set up the traditional parameters corresponding to the Doodson arguments 597 cGamma = cTau; 598 cL = -cL; 599 cLPrime = -cLPrime; 600 cF = -cF; 601 cD = -cD; 602 cOmega = -cOmega; 603 604 // check Doodson number, Doodson multipliers and Delaunay multipliers consistency 605 if (nDoodson != doodsonToDoodsonNumber(cTau, cS, cH, cP, cNprime, cPs) || 606 nDoodson != delaunayToDoodsonNumber(cGamma, cL, cLPrime, cF, cD, cOmega)) { 607 throw new OrekitException(OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE, 608 lineNumber, name, regularMatcher.group()); 609 } 610 611 } 612 613 final long key = NutationCodec.encode(cGamma, cL, cLPrime, cF, cD, cOmega, 614 cMe, cVe, cE, cMa, cJu, cSa, cUr, cNe, cPa); 615 616 // retrieved the term, or build it if it's the first time it is encountered in the file 617 final SeriesTerm term; 618 if (series.containsKey(key)) { 619 // the term was already known, from another degree 620 term = series.get(key); 621 } else { 622 // the term is a new one 623 term = SeriesTerm.buildTerm(cGamma, cL, cLPrime, cF, cD, cOmega, 624 cMe, cVe, cE, cMa, cJu, cSa, cUr, cNe, cPa); 625 } 626 627 boolean nonZero = false; 628 for (int d = 0; d < sinCosColumns.length / 2; ++d) { 629 final double sinCoeff = 630 parseCoefficient(regularMatcher, sinCosColumns[2 * d], sinCosFactors[2 * d]); 631 final double cosCoeff = 632 parseCoefficient(regularMatcher, sinCosColumns[2 * d + 1], sinCosFactors[2 * d + 1]); 633 if (!Precision.equals(sinCoeff, 0.0, 0) || !Precision.equals(cosCoeff, 0.0, 0)) { 634 nonZero = true; 635 term.add(0, degree + d, sinCoeff, cosCoeff); 636 ++count; 637 } 638 } 639 if (nonZero) { 640 series.put(key, term); 641 } 642 643 if (expectedIndex > 0) { 644 // we are in a file were terms are numbered 645 // we must update the expected value for next term 646 ++expectedIndex; 647 } 648 649 } else { 650 651 final Matcher headerMatcher = degreeSectionHeaderPattern.matcher(line); 652 if (headerMatcher.matches()) { 653 654 // we have found a degree section header 655 final int nextDegree = Integer.parseInt(headerMatcher.group(1)); 656 if ((nextDegree != degree + 1) && (degree != 0 || nextDegree != 0)) { 657 throw new OrekitException(OrekitMessages.MISSING_SERIE_J_IN_FILE, 658 degree + 1, name, lineNumber); 659 } 660 661 if (nextDegree == 0) { 662 // in IERS files split in sections, all terms are numbered 663 // we can check the indices 664 expectedIndex = 1; 665 } 666 667 if (nextDegree > 0 && count != nTerms) { 668 // the previous degree does not have the expected number of terms 669 throw new OrekitException(OrekitMessages.NOT_A_SUPPORTED_IERS_DATA_FILE, name); 670 } 671 672 // remember the number of terms the upcoming sublist should have 673 nTerms = Integer.parseInt(headerMatcher.group(2)); 674 count = 0; 675 degree = nextDegree; 676 677 } else if (polynomial == null) { 678 // look for the polynomial part 679 final double[] coefficients = polynomialParser.parse(line); 680 if (coefficients != null) { 681 polynomial = new PolynomialNutation(coefficients); 682 } 683 } 684 685 } 686 687 } 688 689 if (polynomial == null || series.isEmpty()) { 690 throw new OrekitException(OrekitMessages.NOT_A_SUPPORTED_IERS_DATA_FILE, name); 691 } 692 693 if (nTerms > 0 && count != nTerms) { 694 // the last degree does not have the expected number of terms 695 throw new OrekitException(OrekitMessages.NOT_A_SUPPORTED_IERS_DATA_FILE, name); 696 } 697 698 // build the series 699 return new PoissonSeries(polynomial, series); 700 701 } catch (IOException ioe) { 702 throw new OrekitException(ioe, new DummyLocalizable(ioe.getMessage())); 703 } 704 705 } 706 707 /** Parse a scaled coefficient. 708 * @param matcher line matcher holding the coefficient 709 * @param group group number of the coefficient, or -1 if line does not contain coefficient 710 * @param scale scaling factor to apply 711 * @return scaled factor, or 0.0 if group is -1 712 */ 713 private double parseCoefficient(final Matcher matcher, final int group, final double scale) { 714 if (group < 0) { 715 return 0.0; 716 } else { 717 return scale * Double.parseDouble(matcher.group(group)); 718 } 719 } 720 721 /** Compute Doodson number from Delaunay multipliers. 722 * @param cGamma coefficient for γ = GMST + π tide parameter 723 * @param cL coefficient for mean anomaly of the Moon 724 * @param cLPrime coefficient for mean anomaly of the Sun 725 * @param cF coefficient for L - Ω where L is the mean longitude of the Moon 726 * @param cD coefficient for mean elongation of the Moon from the Sun 727 * @param cOmega coefficient for mean longitude of the ascending node of the Moon 728 * @return computed Doodson number 729 */ 730 private int delaunayToDoodsonNumber(final int cGamma, 731 final int cL, final int cLPrime, final int cF, 732 final int cD, final int cOmega) { 733 734 // reconstruct Doodson multipliers from gamma and Delaunay multipliers 735 final int cTau = cGamma; 736 final int cS = cGamma + (cL + cF + cD); 737 final int cH = cLPrime - cD; 738 final int cP = -cL; 739 final int cNprime = cF - cOmega; 740 final int cPs = -cLPrime; 741 742 return doodsonToDoodsonNumber(cTau, cS, cH, cP, cNprime, cPs); 743 744 } 745 746 /** Compute Doodson number from Doodson multipliers. 747 * @param cTau coefficient for mean lunar time 748 * @param cS coefficient for mean longitude of the Moon 749 * @param cH coefficient for mean longitude of the Sun 750 * @param cP coefficient for longitude of Moon mean perigee 751 * @param cNprime negative of the longitude of the Moon's mean ascending node on the ecliptic 752 * @param cPs coefficient for longitude of Sun mean perigee 753 * @return computed Doodson number 754 */ 755 private int doodsonToDoodsonNumber(final int cTau, 756 final int cS, final int cH, final int cP, 757 final int cNprime, final int cPs) { 758 759 return ((((cTau * 10 + (cS + 5)) * 10 + (cH + 5)) * 10 + (cP + 5)) * 10 + (cNprime + 5)) * 10 + (cPs + 5); 760 761 } 762 763 }