1 /* Copyright 2002-2019 CS Systèmes d'Information 2 * Licensed to CS Systèmes d'Information (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.data; 18 19 import org.hipparchus.RealFieldElement; 20 21 /** Class for tide terms. 22 * <p> 23 * BEWARE! For consistency with all the other Poisson series terms, 24 * the elements in γ, l, l', F, D and Ω are ADDED together to compute 25 * the argument of the term. In classical tides series, the computed 26 * argument is cGamma * γ - (cL * l + cLPrime * l' + cF * F + cD * D 27 * + cOmega * Ω). So at parsing time, the signs of cL, cLPrime, cF, 28 * cD and cOmega must already have been reversed so the addition 29 * performed here will work. This is done automatically when the 30 * parser has been configured with a call to {@link 31 * PoissonSeriesParser#withDoodson(int, int)} as the relationship 32 * between the Doodson arguments and the traditional Delaunay 33 * arguments ensures the proper sign is known. 34 * </p> 35 * @param <T> the type of the field elements 36 * @author Luc Maisonobe 37 */ 38 class TideTerm extends SeriesTerm { 39 40 /** Coefficient for γ = GMST + π tide parameter. */ 41 private final int cGamma; 42 43 /** Coefficient for mean anomaly of the Moon. */ 44 private final int cL; 45 46 /** Coefficient for mean anomaly of the Sun. */ 47 private final int cLPrime; 48 49 /** Coefficient for L - Ω where L is the mean longitude of the Moon. */ 50 private final int cF; 51 52 /** Coefficient for mean elongation of the Moon from the Sun. */ 53 private final int cD; 54 55 /** Coefficient for mean longitude of the ascending node of the Moon. */ 56 private final int cOmega; 57 58 /** Build a tide term for nutation series. 59 * @param cGamma coefficient for γ = GMST + π tide parameter 60 * @param cL coefficient for mean anomaly of the Moon 61 * @param cLPrime coefficient for mean anomaly of the Sun 62 * @param cF coefficient for L - Ω where L is the mean longitude of the Moon 63 * @param cD coefficient for mean elongation of the Moon from the Sun 64 * @param cOmega coefficient for mean longitude of the ascending node of the Moon 65 */ 66 TideTerm(final int cGamma, 67 final int cL, final int cLPrime, final int cF, final int cD, final int cOmega) { 68 this.cGamma = cGamma; 69 this.cL = cL; 70 this.cLPrime = cLPrime; 71 this.cF = cF; 72 this.cD = cD; 73 this.cOmega = cOmega; 74 } 75 76 /** {@inheritDoc} */ 77 protected double argument(final BodiesElements elements) { 78 return cGamma * elements.getGamma() + 79 cL * elements.getL() + cLPrime * elements.getLPrime() + cF * elements.getF() + 80 cD * elements.getD() + cOmega * elements.getOmega(); 81 } 82 83 /** {@inheritDoc} */ 84 protected double argumentDerivative(final BodiesElements elements) { 85 return cGamma * elements.getGammaDot() + 86 cL * elements.getLDot() + cLPrime * elements.getLPrimeDot() + cF * elements.getFDot() + 87 cD * elements.getDDot() + cOmega * elements.getOmegaDot(); 88 } 89 90 /** {@inheritDoc} */ 91 protected <T extends RealFieldElement<T>> T argument(final FieldBodiesElements<T> elements) { 92 return elements.getGamma().multiply(cGamma). 93 add(elements.getL().multiply(cL)). 94 add(elements.getLPrime().multiply(cLPrime)). 95 add(elements.getF().multiply(cF)). 96 add(elements.getD().multiply(cD)). 97 add(elements.getOmega().multiply(cOmega)); 98 } 99 100 /** {@inheritDoc} */ 101 protected <T extends RealFieldElement<T>> T argumentDerivative(final FieldBodiesElements<T> elements) { 102 return elements.getGammaDot().multiply(cGamma). 103 add(elements.getLDot().multiply(cL)). 104 add(elements.getLPrimeDot().multiply(cLPrime)). 105 add(elements.getFDot().multiply(cF)). 106 add(elements.getDDot().multiply(cD)). 107 add(elements.getOmegaDot().multiply(cOmega)); 108 } 109 110 }