Class FieldCircularOrbit<T extends org.hipparchus.RealFieldElement<T>>
- java.lang.Object
-
- org.orekit.orbits.FieldOrbit<T>
-
- org.orekit.orbits.FieldCircularOrbit<T>
-
- All Implemented Interfaces:
FieldTimeInterpolable<FieldOrbit<T>,T>
,FieldTimeShiftable<FieldOrbit<T>,T>
,FieldTimeStamped<T>
,FieldPVCoordinatesProvider<T>
public class FieldCircularOrbit<T extends org.hipparchus.RealFieldElement<T>> extends FieldOrbit<T>
This class handles circular orbital parameters.The parameters used internally are the circular elements which can be related to Keplerian elements as follows:
- a
- ex = e cos(ω)
- ey = e sin(ω)
- i
- Ω
- αv = v + ω
The conversion equations from and to Keplerian elements given above hold only when both sides are unambiguously defined, i.e. when orbit is neither equatorial nor circular. When orbit is circular (but not equatorial), the circular parameters are still unambiguously defined whereas some Keplerian elements (more precisely ω and Ω) become ambiguous. When orbit is equatorial, neither the Keplerian nor the circular parameters can be defined unambiguously.
equinoctial orbits
is the recommended way to represent orbits.The instance
CircularOrbit
is guaranteed to be immutable.- Since:
- 9.0
- Author:
- Luc Maisonobe, Fabien Maussion, Véronique Pommier-Maurussane
- See Also:
Orbit
,KeplerianOrbit
,CartesianOrbit
,EquinoctialOrbit
-
-
Constructor Summary
Constructors Constructor Description FieldCircularOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.FieldCircularOrbit(FieldPVCoordinates<T> PVCoordinates, Frame frame, FieldAbsoluteDate<T> date, double mu)
Constructor from Cartesian parameters.FieldCircularOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, double mu)
Constructor from Cartesian parameters.FieldCircularOrbit(T a, T ex, T ey, T i, T raan, T alpha, PositionAngle type, Frame frame, FieldAbsoluteDate<T> date, double mu)
Creates a new instance.FieldCircularOrbit(T a, T ex, T ey, T i, T raan, T alpha, T aDot, T exDot, T eyDot, T iDot, T raanDot, T alphaDot, PositionAngle type, Frame frame, FieldAbsoluteDate<T> date, double mu)
Creates a new instance.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description void
addKeplerContribution(PositionAngle type, double gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesstatic <T extends org.hipparchus.RealFieldElement<T>>
org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>circularToPosition(T a, T ex, T ey, T i, T raan, T alphaV, double mu)
protected T[][]
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.protected T[][]
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.protected T[][]
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.static <T extends org.hipparchus.RealFieldElement<T>>
TeccentricToMean(T alphaE, T ex, T ey)
Computes the mean latitude argument from the eccentric latitude argument.static <T extends org.hipparchus.RealFieldElement<T>>
TeccentricToTrue(T alphaE, T ex, T ey)
Computes the true latitude argument from the eccentric latitude argument.T
getA()
Get the semi-major axis.T
getADot()
Get the semi-major axis derivative.T
getAlpha(PositionAngle type)
Get the latitude argument.T
getAlphaDot(PositionAngle type)
Get the latitude argument derivative.T
getAlphaE()
Get the eccentric latitude argument.T
getAlphaEDot()
Get the eccentric latitude argument derivative.T
getAlphaM()
Get the mean latitude argument.T
getAlphaMDot()
Get the mean latitude argument derivative.T
getAlphaV()
Get the true latitude argument.T
getAlphaVDot()
Get the true latitude argument derivative.T
getCircularEx()
Get the first component of the circular eccentricity vector.T
getCircularExDot()
Get the first component of the circular eccentricity vector derivative.T
getCircularEy()
Get the second component of the circular eccentricity vector.T
getCircularEyDot()
Get the second component of the circular eccentricity vector derivative.T
getE()
Get the eccentricity.T
getEDot()
Get the eccentricity derivative.T
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.T
getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector.T
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.T
getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector.T
getHx()
Get the first component of the inclination vector.T
getHxDot()
Get the first component of the inclination vector derivative.T
getHy()
Get the second component of the inclination vector.T
getHyDot()
Get the second component of the inclination vector derivative.T
getI()
Get the inclination.T
getIDot()
Get the inclination derivative.T
getLE()
Get the eccentric longitude argument.T
getLEDot()
Get the eccentric longitude argument derivative.T
getLM()
Get the mean longitude argument.T
getLMDot()
Get the mean longitude argument derivative.T
getLv()
Get the true longitude argument.T
getLvDot()
Get the true longitude argument derivative.T
getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.T
getRightAscensionOfAscendingNodeDot()
Get the right ascension of the ascending node derivative.OrbitType
getType()
Get the orbit type.boolean
hasDerivatives()
Check if orbit includes derivatives.protected TimeStampedFieldPVCoordinates<T>
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.FieldCircularOrbit<T>
interpolate(FieldAbsoluteDate<T> date, Stream<FieldOrbit<T>> sample)
Get an interpolated instance.static <T extends org.hipparchus.RealFieldElement<T>>
TmeanToEccentric(T alphaM, T ex, T ey)
Computes the eccentric latitude argument from the mean latitude argument.static <T extends org.hipparchus.RealFieldElement<T>>
TnormalizeAngle(T a, T center)
Normalize an angle in a 2π wide interval around a center value.FieldCircularOrbit<T>
shiftedBy(double dt)
Get a time-shifted instance.FieldCircularOrbit<T>
shiftedBy(T dt)
Get a time-shifted orbit.CircularOrbit
toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.String
toString()
Returns a string representation of this Orbit object.static <T extends org.hipparchus.RealFieldElement<T>>
TtrueToEccentric(T alphaV, T ex, T ey)
Computes the eccentric latitude argument from the true latitude argument.-
Methods inherited from class org.orekit.orbits.FieldOrbit
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMu, getPVCoordinates, getPVCoordinates, getPVCoordinates, hasNonKeplerianAcceleration
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.orekit.time.FieldTimeInterpolable
interpolate
-
-
-
-
Constructor Detail
-
FieldCircularOrbit
public FieldCircularOrbit(T a, T ex, T ey, T i, T raan, T alpha, PositionAngle type, Frame frame, FieldAbsoluteDate<T> date, double mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectori
- inclination (rad)raan
- right ascension of ascending node (Ω, rad)alpha
- an + ω, mean, eccentric or true latitude argument (rad)type
- type of latitude argumentframe
- the frame in which are defined the parameters (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldCircularOrbit
public FieldCircularOrbit(T a, T ex, T ey, T i, T raan, T alpha, T aDot, T exDot, T eyDot, T iDot, T raanDot, T alphaDot, PositionAngle type, Frame frame, FieldAbsoluteDate<T> date, double mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectori
- inclination (rad)raan
- right ascension of ascending node (Ω, rad)alpha
- an + ω, mean, eccentric or true latitude argument (rad)aDot
- semi-major axis derivative (m/s)exDot
- d(e cos(ω))/dt, first component of circular eccentricity vector derivativeeyDot
- d(e sin(ω))/dt, second component of circular eccentricity vector derivativeiDot
- inclination derivative(rad/s)raanDot
- right ascension of ascending node derivative (rad/s)alphaDot
- d(an + ω), mean, eccentric or true latitude argument derivative (rad/s)type
- type of latitude argumentframe
- the frame in which are defined the parameters (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldCircularOrbit
public FieldCircularOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, double mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
FieldPVCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(RealFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
pvCoordinates
- theFieldPVCoordinates
in inertial frameframe
- the frame in which are defined theFieldPVCoordinates
(must be apseudo-inertial frame
)mu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
-
FieldCircularOrbit
public FieldCircularOrbit(FieldPVCoordinates<T> PVCoordinates, Frame frame, FieldAbsoluteDate<T> date, double mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
FieldPVCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(RealFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
PVCoordinates
- theFieldPVCoordinates
in inertial frameframe
- the frame in which are defined theFieldPVCoordinates
(must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
-
FieldCircularOrbit
public FieldCircularOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.- Parameters:
op
- orbital parameters to copy
-
-
Method Detail
-
getType
public OrbitType getType()
Get the orbit type.- Specified by:
getType
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- orbit type
-
getA
public T getA()
Get the semi-major axis.Note that the semi-major axis is considered negative for hyperbolic orbits.
- Specified by:
getA
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- semi-major axis (m)
-
getADot
public T getADot()
Get the semi-major axis derivative.Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is null.
- Specified by:
getADot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- semi-major axis derivative (m/s)
-
getEquinoctialEx
public T getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEx
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector
-
getEquinoctialExDot
public T getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialExDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector
-
getEquinoctialEy
public T getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEy
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector
-
getEquinoctialEyDot
public T getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialEyDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector
-
getCircularEx
public T getCircularEx()
Get the first component of the circular eccentricity vector.- Returns:
- ex = e cos(ω), first component of the circular eccentricity vector
-
getCircularExDot
public T getCircularExDot()
Get the first component of the circular eccentricity vector derivative.- Returns:
- d(ex)/dt = d(e cos(ω))/dt, first component of the circular eccentricity vector derivative
-
getCircularEy
public T getCircularEy()
Get the second component of the circular eccentricity vector.- Returns:
- ey = e sin(ω), second component of the circular eccentricity vector
-
getCircularEyDot
public T getCircularEyDot()
Get the second component of the circular eccentricity vector derivative.- Returns:
- d(ey)/dt = d(e sin(ω))/dt, second component of the circular eccentricity vector derivative
-
getHx
public T getHx()
Get the first component of the inclination vector.- Specified by:
getHx
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- first component of the inclination vector
-
getHxDot
public T getHxDot()
Get the first component of the inclination vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getHxDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- first component of the inclination vector derivative
-
getHy
public T getHy()
Get the second component of the inclination vector.- Specified by:
getHy
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- second component of the inclination vector
-
getHyDot
public T getHyDot()
Get the second component of the inclination vector derivative.- Specified by:
getHyDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- second component of the inclination vector derivative
-
getAlphaV
public T getAlphaV()
Get the true latitude argument.- Returns:
- v + ω true latitude argument (rad)
-
getAlphaVDot
public T getAlphaVDot()
Get the true latitude argument derivative.- Returns:
- d(v + ω)/dt true latitude argument derivative (rad/s)
-
getAlphaE
public T getAlphaE()
Get the eccentric latitude argument.- Returns:
- E + ω eccentric latitude argument (rad)
-
getAlphaEDot
public T getAlphaEDot()
Get the eccentric latitude argument derivative.- Returns:
- d(E + ω)/dt eccentric latitude argument derivative (rad/s)
-
getAlphaM
public T getAlphaM()
Get the mean latitude argument.- Returns:
- M + ω mean latitude argument (rad)
-
getAlphaMDot
public T getAlphaMDot()
Get the mean latitude argument derivative.- Returns:
- d(M + ω)/dt mean latitude argument derivative (rad/s)
-
getAlpha
public T getAlpha(PositionAngle type)
Get the latitude argument.- Parameters:
type
- type of the angle- Returns:
- latitude argument (rad)
-
getAlphaDot
public T getAlphaDot(PositionAngle type)
Get the latitude argument derivative.- Parameters:
type
- type of the angle- Returns:
- latitude argument derivative (rad/s)
-
eccentricToTrue
public static <T extends org.hipparchus.RealFieldElement<T>> T eccentricToTrue(T alphaE, T ex, T ey)
Computes the true latitude argument from the eccentric latitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
alphaE
- = E + ω eccentric latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vector- Returns:
- the true latitude argument.
-
trueToEccentric
public static <T extends org.hipparchus.RealFieldElement<T>> T trueToEccentric(T alphaV, T ex, T ey)
Computes the eccentric latitude argument from the true latitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
alphaV
- = v + ω true latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vector- Returns:
- the eccentric latitude argument.
-
meanToEccentric
public static <T extends org.hipparchus.RealFieldElement<T>> T meanToEccentric(T alphaM, T ex, T ey)
Computes the eccentric latitude argument from the mean latitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
alphaM
- = M + ω mean latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vector- Returns:
- the eccentric latitude argument.
-
eccentricToMean
public static <T extends org.hipparchus.RealFieldElement<T>> T eccentricToMean(T alphaE, T ex, T ey)
Computes the mean latitude argument from the eccentric latitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
alphaE
- = E + ω eccentric latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vector- Returns:
- the mean latitude argument.
-
circularToPosition
@Deprecated public static <T extends org.hipparchus.RealFieldElement<T>> org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> circularToPosition(T a, T ex, T ey, T i, T raan, T alphaV, double mu)
Deprecated.Compute position from circular parameters.- Type Parameters:
T
- type of the fiels elements- Parameters:
a
- semi-major axis (m)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectori
- inclination (rad)raan
- right ascension of ascending node (Ω, rad)alphaV
- v + ω true latitude argument (rad)mu
- central attraction coefficient (m³/s²)- Returns:
- position vector
-
getE
public T getE()
Get the eccentricity.- Specified by:
getE
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- eccentricity
-
getEDot
public T getEDot()
Get the eccentricity derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- eccentricity derivative
-
getI
public T getI()
Get the inclination.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getI
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- inclination (rad)
-
getIDot
public T getIDot()
Get the inclination derivative.- Specified by:
getIDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- inclination derivative (rad/s)
-
getRightAscensionOfAscendingNode
public T getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.- Returns:
- right ascension of the ascending node (rad)
-
getRightAscensionOfAscendingNodeDot
public T getRightAscensionOfAscendingNodeDot()
Get the right ascension of the ascending node derivative.- Returns:
- right ascension of the ascending node derivative (rad/s)
-
getLv
public T getLv()
Get the true longitude argument.- Specified by:
getLv
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- v + ω + Ω true longitude argument (rad)
-
getLvDot
public T getLvDot()
Get the true longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLvDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- d(v + ω + Ω)/dt true longitude argument derivative (rad/s)
-
getLE
public T getLE()
Get the eccentric longitude argument.- Specified by:
getLE
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- E + ω + Ω eccentric longitude argument (rad)
-
getLEDot
public T getLEDot()
Get the eccentric longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLEDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- d(E + ω + Ω)/dt eccentric longitude argument derivative (rad/s)
-
getLM
public T getLM()
Get the mean longitude argument.- Specified by:
getLM
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- M + ω + Ω mean longitude argument (rad)
-
getLMDot
public T getLMDot()
Get the mean longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLMDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- d(M + ω + Ω)/dt mean longitude argument derivative (rad/s)
-
hasDerivatives
public boolean hasDerivatives()
Check if orbit includes derivatives.- Specified by:
hasDerivatives
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- true if orbit includes derivatives
- See Also:
FieldOrbit.getADot()
,FieldOrbit.getEquinoctialExDot()
,FieldOrbit.getEquinoctialEyDot()
,FieldOrbit.getHxDot()
,FieldOrbit.getHyDot()
,FieldOrbit.getLEDot()
,FieldOrbit.getLvDot()
,FieldOrbit.getLMDot()
,FieldOrbit.getEDot()
,FieldOrbit.getIDot()
-
initPVCoordinates
protected TimeStampedFieldPVCoordinates<T> initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.- Specified by:
initPVCoordinates
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- computed position/velocity coordinates
-
shiftedBy
public FieldCircularOrbit<T> shiftedBy(double dt)
Get a time-shifted instance.- Parameters:
dt
- time shift in seconds- Returns:
- a new instance, shifted with respect to instance (which is not changed)
-
shiftedBy
public FieldCircularOrbit<T> shiftedBy(T dt)
Get a time-shifted orbit.The orbit can be slightly shifted to close dates. This shift is based on a simple Keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
- Specified by:
shiftedBy
in interfaceFieldTimeShiftable<FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>,T extends org.hipparchus.RealFieldElement<T>>
- Specified by:
shiftedBy
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
dt
- time shift in seconds- Returns:
- a new orbit, shifted with respect to the instance (which is immutable)
-
interpolate
public FieldCircularOrbit<T> interpolate(FieldAbsoluteDate<T> date, Stream<FieldOrbit<T>> sample)
Get an interpolated instance.Note that the state of the current instance may not be used in the interpolation process, only its type and non interpolable fields are used (for example central attraction coefficient or frame when interpolating orbits). The interpolable fields taken into account are taken only from the states of the sample points. So if the state of the instance must be used, the instance should be included in the sample points.
Note that this method is designed for small samples only (say up to about 10-20 points) so it can be implemented using polynomial interpolation (typically Hermite interpolation). Using too much points may induce Runge's phenomenon and numerical problems (including NaN appearing).
The interpolated instance is created by polynomial Hermite interpolation on circular elements, without derivatives (which means the interpolation falls back to Lagrange interpolation only).
As this implementation of interpolation is polynomial, it should be used only with small samples (about 10-20 points) in order to avoid Runge's phenomenon and numerical problems (including NaN appearing).
If orbit interpolation on large samples is needed, using the
Ephemeris
class is a better way than using this low-level interpolation. The Ephemeris class automatically handles selection of a neighboring sub-sample with a predefined number of point from a large global sample in a thread-safe way.- Parameters:
date
- interpolation datesample
- sample points on which interpolation should be done- Returns:
- a new instance, interpolated at specified date
-
computeJacobianMeanWrtCartesian
protected T[][] computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianMeanWrtCartesian
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianEccentricWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianEccentricWrtCartesian
protected T[][] computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianEccentricWrtCartesian
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianTrueWrtCartesian
protected T[][] computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianTrueWrtCartesian
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianEccentricWrtCartesian()
-
addKeplerContribution
public void addKeplerContribution(PositionAngle type, double gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesThis method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
- Specified by:
addKeplerContribution
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian part must be added to the array components, as the array may already contain some non-zero elements corresponding to non-Keplerian parts)
-
toString
public String toString()
Returns a string representation of this Orbit object.
-
normalizeAngle
public static <T extends org.hipparchus.RealFieldElement<T>> T normalizeAngle(T a, T center)
Normalize an angle in a 2π wide interval around a center value.This method has three main uses:
- normalize an angle between 0 and 2π:
a = MathUtils.normalizeAngle(a, FastMath.PI);
- normalize an angle between -π and +π
a = MathUtils.normalizeAngle(a, 0.0);
- compute the angle between two defining angular positions:
angle = MathUtils.normalizeAngle(end, start) - start;
Note that due to numerical accuracy and since π cannot be represented exactly, the result interval is closed, it cannot be half-closed as would be more satisfactory in a purely mathematical view.
- Type Parameters:
T
- the type of the field elements- Parameters:
a
- angle to normalizecenter
- center of the desired 2π interval for the result- Returns:
- a-2kπ with integer k and center-π <= a-2kπ <= center+π
- normalize an angle between 0 and 2π:
-
toOrbit
public CircularOrbit toOrbit()
Description copied from class:FieldOrbit
Transforms the FieldOrbit instance into an Orbit instance.- Specified by:
toOrbit
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- Orbit instance with same properties
-
-