Class FieldEquinoctialOrbit<T extends org.hipparchus.RealFieldElement<T>>
- java.lang.Object
-
- org.orekit.orbits.FieldOrbit<T>
-
- org.orekit.orbits.FieldEquinoctialOrbit<T>
-
- All Implemented Interfaces:
FieldTimeInterpolable<FieldOrbit<T>,T>
,FieldTimeShiftable<FieldOrbit<T>,T>
,FieldTimeStamped<T>
,FieldPVCoordinatesProvider<T>
public class FieldEquinoctialOrbit<T extends org.hipparchus.RealFieldElement<T>> extends FieldOrbit<T>
This class handles equinoctial orbital parameters, which can support both circular and equatorial orbits.The parameters used internally are the equinoctial elements which can be related to Keplerian elements as follows:
a ex = e cos(ω + Ω) ey = e sin(ω + Ω) hx = tan(i/2) cos(Ω) hy = tan(i/2) sin(Ω) lv = v + ω + Ω
where ω stands for the Perigee Argument and Ω stands for the Right Ascension of the Ascending Node.The conversion equations from and to Keplerian elements given above hold only when both sides are unambiguously defined, i.e. when orbit is neither equatorial nor circular. When orbit is either equatorial or circular, the equinoctial parameters are still unambiguously defined whereas some Keplerian elements (more precisely ω and Ω) become ambiguous. For this reason, equinoctial parameters are the recommended way to represent orbits.
The instance
EquinoctialOrbit
is guaranteed to be immutable.- Since:
- 9.0
- Author:
- Mathieu Roméro, Luc Maisonobe, Guylaine Prat, Fabien Maussion, Véronique Pommier-Maurussane
- See Also:
Orbit
,KeplerianOrbit
,CircularOrbit
,CartesianOrbit
-
-
Constructor Summary
Constructors Constructor Description FieldEquinoctialOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.FieldEquinoctialOrbit(FieldPVCoordinates<T> pvCoordinates, Frame frame, FieldAbsoluteDate<T> date, double mu)
Constructor from Cartesian parameters.FieldEquinoctialOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, double mu)
Constructor from Cartesian parameters.FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, PositionAngle type, Frame frame, FieldAbsoluteDate<T> date, double mu)
Creates a new instance.FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, T aDot, T exDot, T eyDot, T hxDot, T hyDot, T lDot, PositionAngle type, Frame frame, FieldAbsoluteDate<T> date, double mu)
Creates a new instance.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description void
addKeplerContribution(PositionAngle type, double gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesprotected T[][]
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.protected T[][]
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.protected T[][]
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.static <T extends org.hipparchus.RealFieldElement<T>>
TeccentricToMean(T lE, T ex, T ey)
Computes the mean longitude argument from the eccentric longitude argument.static <T extends org.hipparchus.RealFieldElement<T>>
TeccentricToTrue(T lE, T ex, T ey)
Computes the true longitude argument from the eccentric longitude argument.static <T extends org.hipparchus.RealFieldElement<T>>
org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>equinoctialToPosition(T a, T ex, T ey, T hx, T hy, T lv, double mu)
T
getA()
Get the semi-major axis.T
getADot()
Get the semi-major axis derivative.T
getE()
Get the eccentricity.T
getEDot()
Get the eccentricity derivative.T
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.T
getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector.T
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.T
getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector.T
getHx()
Get the first component of the inclination vector.T
getHxDot()
Get the first component of the inclination vector derivative.T
getHy()
Get the second component of the inclination vector.T
getHyDot()
Get the second component of the inclination vector derivative.T
getI()
Get the inclination.T
getIDot()
Get the inclination derivative.T
getL(PositionAngle type)
Get the longitude argument.T
getLDot(PositionAngle type)
Get the longitude argument derivative.T
getLE()
Get the eccentric longitude argument.T
getLEDot()
Get the eccentric longitude argument derivative.T
getLM()
Get the mean longitude argument.T
getLMDot()
Get the mean longitude argument derivative.T
getLv()
Get the true longitude argument.T
getLvDot()
Get the true longitude argument derivative.OrbitType
getType()
Get the orbit type.boolean
hasDerivatives()
Check if orbit includes derivatives.protected TimeStampedFieldPVCoordinates<T>
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.FieldEquinoctialOrbit<T>
interpolate(FieldAbsoluteDate<T> date, Stream<FieldOrbit<T>> sample)
Get an interpolated instance.static <T extends org.hipparchus.RealFieldElement<T>>
TmeanToEccentric(T lM, T ex, T ey)
Computes the eccentric longitude argument from the mean longitude argument.static <T extends org.hipparchus.RealFieldElement<T>>
TnormalizeAngle(T a, T center)
Normalize an angle in a 2π wide interval around a center value.FieldEquinoctialOrbit<T>
shiftedBy(double dt)
Get a time-shifted instance.FieldEquinoctialOrbit<T>
shiftedBy(T dt)
Get a time-shifted orbit.EquinoctialOrbit
toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.String
toString()
Returns a string representation of this equinoctial parameters object.static <T extends org.hipparchus.RealFieldElement<T>>
TtrueToEccentric(T lv, T ex, T ey)
Computes the eccentric longitude argument from the true longitude argument.-
Methods inherited from class org.orekit.orbits.FieldOrbit
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMu, getPVCoordinates, getPVCoordinates, getPVCoordinates, hasNonKeplerianAcceleration
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.orekit.time.FieldTimeInterpolable
interpolate
-
-
-
-
Constructor Detail
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, PositionAngle type, Frame frame, FieldAbsoluteDate<T> date, double mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m)ex
- e cos(ω + Ω), first component of eccentricity vectorey
- e sin(ω + Ω), second component of eccentricity vectorhx
- tan(i/2) cos(Ω), first component of inclination vectorhy
- tan(i/2) sin(Ω), second component of inclination vectorl
- (M or E or v) + ω + Ω, mean, eccentric or true longitude argument (rad)type
- type of longitude argumentframe
- the frame in which the parameters are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, T aDot, T exDot, T eyDot, T hxDot, T hyDot, T lDot, PositionAngle type, Frame frame, FieldAbsoluteDate<T> date, double mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m)ex
- e cos(ω + Ω), first component of eccentricity vectorey
- e sin(ω + Ω), second component of eccentricity vectorhx
- tan(i/2) cos(Ω), first component of inclination vectorhy
- tan(i/2) sin(Ω), second component of inclination vectorl
- (M or E or v) + ω + Ω, mean, eccentric or true longitude argument (rad)aDot
- semi-major axis derivative (m/s)exDot
- d(e cos(ω + Ω))/dt, first component of eccentricity vector derivativeeyDot
- d(e sin(ω + Ω))/dt, second component of eccentricity vector derivativehxDot
- d(tan(i/2) cos(Ω))/dt, first component of inclination vector derivativehyDot
- d(tan(i/2) sin(Ω))/dt, second component of inclination vector derivativelDot
- d(M or E or v) + ω + Ω)/dr, mean, eccentric or true longitude argument derivative (rad/s)type
- type of longitude argumentframe
- the frame in which the parameters are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, double mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
pvCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(RealFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
pvCoordinates
- the position, velocity and accelerationframe
- the frame in which are defined theFieldPVCoordinates
(must be apseudo-inertial frame
)mu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(FieldPVCoordinates<T> pvCoordinates, Frame frame, FieldAbsoluteDate<T> date, double mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
pvCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(RealFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
pvCoordinates
- the position end velocityframe
- the frame in which are defined theFieldPVCoordinates
(must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.- Parameters:
op
- orbital parameters to copy
-
-
Method Detail
-
getType
public OrbitType getType()
Get the orbit type.- Specified by:
getType
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- orbit type
-
getA
public T getA()
Get the semi-major axis.Note that the semi-major axis is considered negative for hyperbolic orbits.
- Specified by:
getA
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- semi-major axis (m)
-
getADot
public T getADot()
Get the semi-major axis derivative.Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is null.
- Specified by:
getADot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- semi-major axis derivative (m/s)
-
getEquinoctialEx
public T getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEx
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector
-
getEquinoctialExDot
public T getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialExDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector
-
getEquinoctialEy
public T getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEy
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector
-
getEquinoctialEyDot
public T getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialEyDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector
-
getHx
public T getHx()
Get the first component of the inclination vector.- Specified by:
getHx
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- first component of the inclination vector
-
getHxDot
public T getHxDot()
Get the first component of the inclination vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getHxDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- first component of the inclination vector derivative
-
getHy
public T getHy()
Get the second component of the inclination vector.- Specified by:
getHy
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- second component of the inclination vector
-
getHyDot
public T getHyDot()
Get the second component of the inclination vector derivative.- Specified by:
getHyDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- second component of the inclination vector derivative
-
getLv
public T getLv()
Get the true longitude argument.- Specified by:
getLv
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- v + ω + Ω true longitude argument (rad)
-
getLvDot
public T getLvDot()
Get the true longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLvDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- d(v + ω + Ω)/dt true longitude argument derivative (rad/s)
-
getLE
public T getLE()
Get the eccentric longitude argument.- Specified by:
getLE
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- E + ω + Ω eccentric longitude argument (rad)
-
getLEDot
public T getLEDot()
Get the eccentric longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLEDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- d(E + ω + Ω)/dt eccentric longitude argument derivative (rad/s)
-
getLM
public T getLM()
Get the mean longitude argument.- Specified by:
getLM
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- M + ω + Ω mean longitude argument (rad)
-
getLMDot
public T getLMDot()
Get the mean longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLMDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- d(M + ω + Ω)/dt mean longitude argument derivative (rad/s)
-
getL
public T getL(PositionAngle type)
Get the longitude argument.- Parameters:
type
- type of the angle- Returns:
- longitude argument (rad)
-
getLDot
public T getLDot(PositionAngle type)
Get the longitude argument derivative.- Parameters:
type
- type of the angle- Returns:
- longitude argument derivative (rad/s)
-
hasDerivatives
public boolean hasDerivatives()
Check if orbit includes derivatives.- Specified by:
hasDerivatives
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- true if orbit includes derivatives
- See Also:
FieldOrbit.getADot()
,FieldOrbit.getEquinoctialExDot()
,FieldOrbit.getEquinoctialEyDot()
,FieldOrbit.getHxDot()
,FieldOrbit.getHyDot()
,FieldOrbit.getLEDot()
,FieldOrbit.getLvDot()
,FieldOrbit.getLMDot()
,FieldOrbit.getEDot()
,FieldOrbit.getIDot()
-
eccentricToTrue
public static <T extends org.hipparchus.RealFieldElement<T>> T eccentricToTrue(T lE, T ex, T ey)
Computes the true longitude argument from the eccentric longitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
lE
- = E + ω + Ω eccentric longitude argument (rad)ex
- first component of the eccentricity vectorey
- second component of the eccentricity vector- Returns:
- the true longitude argument
-
trueToEccentric
public static <T extends org.hipparchus.RealFieldElement<T>> T trueToEccentric(T lv, T ex, T ey)
Computes the eccentric longitude argument from the true longitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
lv
- = v + ω + Ω true longitude argument (rad)ex
- first component of the eccentricity vectorey
- second component of the eccentricity vector- Returns:
- the eccentric longitude argument
-
meanToEccentric
public static <T extends org.hipparchus.RealFieldElement<T>> T meanToEccentric(T lM, T ex, T ey)
Computes the eccentric longitude argument from the mean longitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
lM
- = M + ω + Ω mean longitude argument (rad)ex
- first component of the eccentricity vectorey
- second component of the eccentricity vector- Returns:
- the eccentric longitude argument
-
eccentricToMean
public static <T extends org.hipparchus.RealFieldElement<T>> T eccentricToMean(T lE, T ex, T ey)
Computes the mean longitude argument from the eccentric longitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
lE
- = E + ω + Ω mean longitude argument (rad)ex
- first component of the eccentricity vectorey
- second component of the eccentricity vector- Returns:
- the mean longitude argument
-
equinoctialToPosition
@Deprecated public static <T extends org.hipparchus.RealFieldElement<T>> org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> equinoctialToPosition(T a, T ex, T ey, T hx, T hy, T lv, double mu)
Deprecated.Compute position from equinoctial parameters.- Type Parameters:
T
- type of the field elements- Parameters:
a
- semi-major axis (m)ex
- e cos(ω + Ω), first component of eccentricity vectorey
- e sin(ω + Ω), second component of eccentricity vectorhx
- tan(i/2) cos(Ω), first component of inclination vectorhy
- tan(i/2) sin(Ω), second component of inclination vectorlv
- v + ω + Ω true longitude argument (rad)mu
- central attraction coefficient (m³/s²)- Returns:
- position vector
-
getE
public T getE()
Get the eccentricity.- Specified by:
getE
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- eccentricity
-
getEDot
public T getEDot()
Get the eccentricity derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- eccentricity derivative
-
getI
public T getI()
Get the inclination.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getI
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- inclination (rad)
-
getIDot
public T getIDot()
Get the inclination derivative.- Specified by:
getIDot
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- inclination derivative (rad/s)
-
initPVCoordinates
protected TimeStampedFieldPVCoordinates<T> initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.- Specified by:
initPVCoordinates
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- computed position/velocity coordinates
-
shiftedBy
public FieldEquinoctialOrbit<T> shiftedBy(double dt)
Get a time-shifted instance.- Parameters:
dt
- time shift in seconds- Returns:
- a new instance, shifted with respect to instance (which is not changed)
-
shiftedBy
public FieldEquinoctialOrbit<T> shiftedBy(T dt)
Get a time-shifted orbit.The orbit can be slightly shifted to close dates. This shift is based on a simple Keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
- Specified by:
shiftedBy
in interfaceFieldTimeShiftable<FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>,T extends org.hipparchus.RealFieldElement<T>>
- Specified by:
shiftedBy
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
dt
- time shift in seconds- Returns:
- a new orbit, shifted with respect to the instance (which is immutable)
-
interpolate
public FieldEquinoctialOrbit<T> interpolate(FieldAbsoluteDate<T> date, Stream<FieldOrbit<T>> sample)
Get an interpolated instance.Note that the state of the current instance may not be used in the interpolation process, only its type and non interpolable fields are used (for example central attraction coefficient or frame when interpolating orbits). The interpolable fields taken into account are taken only from the states of the sample points. So if the state of the instance must be used, the instance should be included in the sample points.
Note that this method is designed for small samples only (say up to about 10-20 points) so it can be implemented using polynomial interpolation (typically Hermite interpolation). Using too much points may induce Runge's phenomenon and numerical problems (including NaN appearing).
The interpolated instance is created by polynomial Hermite interpolation on equinoctial elements, without derivatives (which means the interpolation falls back to Lagrange interpolation only).
As this implementation of interpolation is polynomial, it should be used only with small samples (about 10-20 points) in order to avoid Runge's phenomenon and numerical problems (including NaN appearing).
If orbit interpolation on large samples is needed, using the
Ephemeris
class is a better way than using this low-level interpolation. The Ephemeris class automatically handles selection of a neighboring sub-sample with a predefined number of point from a large global sample in a thread-safe way.- Parameters:
date
- interpolation datesample
- sample points on which interpolation should be done- Returns:
- a new instance, interpolated at specified date
-
computeJacobianMeanWrtCartesian
protected T[][] computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianMeanWrtCartesian
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianEccentricWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianEccentricWrtCartesian
protected T[][] computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianEccentricWrtCartesian
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianTrueWrtCartesian
protected T[][] computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianTrueWrtCartesian
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianEccentricWrtCartesian()
-
addKeplerContribution
public void addKeplerContribution(PositionAngle type, double gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesThis method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
- Specified by:
addKeplerContribution
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian part must be added to the array components, as the array may already contain some non-zero elements corresponding to non-Keplerian parts)
-
toString
public String toString()
Returns a string representation of this equinoctial parameters object.
-
normalizeAngle
public static <T extends org.hipparchus.RealFieldElement<T>> T normalizeAngle(T a, T center)
Normalize an angle in a 2π wide interval around a center value.This method has three main uses:
- normalize an angle between 0 and 2π:
a = MathUtils.normalizeAngle(a, FastMath.PI);
- normalize an angle between -π and +π
a = MathUtils.normalizeAngle(a, 0.0);
- compute the angle between two defining angular positions:
angle = MathUtils.normalizeAngle(end, start) - start;
Note that due to numerical accuracy and since π cannot be represented exactly, the result interval is closed, it cannot be half-closed as would be more satisfactory in a purely mathematical view.
- Type Parameters:
T
- the type of the field elements- Parameters:
a
- angle to normalizecenter
- center of the desired 2π interval for the result- Returns:
- a-2kπ with integer k and center-π <= a-2kπ <= center+π
- normalize an angle between 0 and 2π:
-
toOrbit
public EquinoctialOrbit toOrbit()
Description copied from class:FieldOrbit
Transforms the FieldOrbit instance into an Orbit instance.- Specified by:
toOrbit
in classFieldOrbit<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- Orbit instance with same properties
-
-