1   /* Copyright 2002-2024 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.utils;
18  
19  import org.hipparchus.analysis.differentiation.Derivative;
20  import org.hipparchus.geometry.euclidean.threed.FieldRotation;
21  import org.hipparchus.geometry.euclidean.threed.Rotation;
22  import org.hipparchus.geometry.euclidean.threed.RotationConvention;
23  import org.hipparchus.geometry.euclidean.threed.Vector3D;
24  import org.orekit.time.AbsoluteDate;
25  import org.orekit.time.TimeOffset;
26  import org.orekit.time.TimeStamped;
27  
28  /** {@link TimeStamped time-stamped} version of {@link AngularCoordinates}.
29   * <p>Instances of this class are guaranteed to be immutable.</p>
30   * @author Luc Maisonobe
31   * @since 7.0
32   */
33  public class TimeStampedAngularCoordinates extends AngularCoordinates implements TimeStamped {
34  
35      /** Serializable UID. */
36      private static final long serialVersionUID = 20140723L;
37  
38      /** The date. */
39      private final AbsoluteDate date;
40  
41      /** Builds a rotation/rotation rate pair.
42       * @param date coordinates date
43       * @param rotation rotation
44       * @param rotationRate rotation rate Ω (rad/s)
45       * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²)
46       */
47      public TimeStampedAngularCoordinates(final AbsoluteDate date,
48                                           final Rotation rotation,
49                                           final Vector3D rotationRate,
50                                           final Vector3D rotationAcceleration) {
51          super(rotation, rotationRate, rotationAcceleration);
52          this.date = date;
53      }
54  
55      /** Build the rotation that transforms a pair of pv coordinates into another pair.
56  
57       * <p><em>WARNING</em>! This method requires much more stringent assumptions on
58       * its parameters than the similar {@link Rotation#Rotation(Vector3D, Vector3D,
59       * Vector3D, Vector3D) constructor} from the {@link Rotation Rotation} class.
60       * As far as the Rotation constructor is concerned, the {@code v₂} vector from
61       * the second pair can be slightly misaligned. The Rotation constructor will
62       * compensate for this misalignment and create a rotation that ensure {@code
63       * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT
64       * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be
65       * preserved, this constructor works <em>only</em> if the two pairs are fully
66       * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code
67       * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt
68       * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p>
69  
70       * @param date coordinates date
71       * @param u1 first vector of the origin pair
72       * @param u2 second vector of the origin pair
73       * @param v1 desired image of u1 by the rotation
74       * @param v2 desired image of u2 by the rotation
75       * @param tolerance relative tolerance factor used to check singularities
76       */
77      public TimeStampedAngularCoordinates(final AbsoluteDate date,
78                                           final PVCoordinates u1, final PVCoordinates u2,
79                                           final PVCoordinates v1, final PVCoordinates v2,
80                                           final double tolerance) {
81          super(u1, u2, v1, v2, tolerance);
82          this.date = date;
83      }
84  
85      /** Build one of the rotations that transform one pv coordinates into another one.
86  
87       * <p>Except for a possible scale factor, if the instance were
88       * applied to the vector u it will produce the vector v. There is an
89       * infinite number of such rotations, this constructor choose the
90       * one with the smallest associated angle (i.e. the one whose axis
91       * is orthogonal to the (u, v) plane). If u and v are collinear, an
92       * arbitrary rotation axis is chosen.</p>
93  
94       * @param date coordinates date
95       * @param u origin vector
96       * @param v desired image of u by the rotation
97       */
98      public TimeStampedAngularCoordinates(final AbsoluteDate date,
99                                           final PVCoordinates u, final PVCoordinates v) {
100         super(u, v);
101         this.date = date;
102     }
103 
104     /** Builds a TimeStampedAngularCoordinates from  a {@link FieldRotation}&lt;{@link Derivative}&gt;.
105      * <p>
106      * The rotation components must have time as their only derivation parameter and
107      * have consistent derivation orders.
108      * </p>
109      * @param date coordinates date
110      * @param r rotation with time-derivatives embedded within the coordinates
111      * @param <U> type of the derivative
112      */
113     public <U extends Derivative<U>>TimeStampedAngularCoordinates(final AbsoluteDate date,
114                                                                   final FieldRotation<U> r) {
115         super(r);
116         this.date = date;
117     }
118 
119     /** {@inheritDoc} */
120     public AbsoluteDate getDate() {
121         return date;
122     }
123 
124     /** Revert a rotation/rotation rate pair.
125      * Build a pair which reverse the effect of another pair.
126      * @return a new pair whose effect is the reverse of the effect
127      * of the instance
128      */
129     public TimeStampedAngularCoordinates revert() {
130         return new TimeStampedAngularCoordinates(date,
131                                                  getRotation().revert(),
132                                                  getRotation().applyInverseTo(getRotationRate().negate()),
133                                                  getRotation().applyInverseTo(getRotationAcceleration().negate()));
134     }
135 
136     /** Get a time-shifted state.
137      * <p>
138      * The state can be slightly shifted to close dates. This shift is based on
139      * a simple linear model. It is <em>not</em> intended as a replacement for
140      * proper attitude propagation but should be sufficient for either small
141      * time shifts or coarse accuracy.
142      * </p>
143      * @param dt time shift in seconds
144      * @return a new state, shifted with respect to the instance (which is immutable)
145      */
146     public TimeStampedAngularCoordinates shiftedBy(final double dt) {
147         final AngularCoordinates sac = super.shiftedBy(dt);
148         return new TimeStampedAngularCoordinates(date.shiftedBy(dt),
149                                                  sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration());
150 
151     }
152 
153     /** Get a time-shifted state.
154      * <p>
155      * The state can be slightly shifted to close dates. This shift is based on
156      * a simple linear model. It is <em>not</em> intended as a replacement for
157      * proper attitude propagation but should be sufficient for either small
158      * time shifts or coarse accuracy.
159      * </p>
160      * @param dt time shift in seconds
161      * @return a new state, shifted with respect to the instance (which is immutable)
162      * @since 13.0
163      */
164     public TimeStampedAngularCoordinates shiftedBy(final TimeOffset dt) {
165         final AngularCoordinates sac = super.shiftedBy(dt);
166         return new TimeStampedAngularCoordinates(date.shiftedBy(dt),
167                                                  sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration());
168 
169     }
170 
171     /** Add an offset from the instance.
172      * <p>
173      * We consider here that the offset rotation is applied first and the
174      * instance is applied afterward. Note that angular coordinates do <em>not</em>
175      * commute under this operation, i.e. {@code a.addOffset(b)} and {@code
176      * b.addOffset(a)} lead to <em>different</em> results in most cases.
177      * </p>
178      * <p>
179      * The two methods {@link #addOffset(AngularCoordinates) addOffset} and
180      * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed
181      * so that round trip applications are possible. This means that both {@code
182      * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
183      * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
184      * </p>
185      * @param offset offset to subtract
186      * @return new instance, with offset subtracted
187      * @see #subtractOffset(AngularCoordinates)
188      */
189     @Override
190     public TimeStampedAngularCoordinates addOffset(final AngularCoordinates offset) {
191         final Vector3D rOmega    = getRotation().applyTo(offset.getRotationRate());
192         final Vector3D rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration());
193         return new TimeStampedAngularCoordinates(date,
194                                                  getRotation().compose(offset.getRotation(), RotationConvention.VECTOR_OPERATOR),
195                                                  getRotationRate().add(rOmega),
196                                                  new Vector3D( 1.0, getRotationAcceleration(),
197                                                                1.0, rOmegaDot,
198                                                               -1.0, Vector3D.crossProduct(getRotationRate(), rOmega)));
199     }
200 
201     /** Subtract an offset from the instance.
202      * <p>
203      * We consider here that the offset rotation is applied first and the
204      * instance is applied afterward. Note that angular coordinates do <em>not</em>
205      * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code
206      * b.subtractOffset(a)} lead to <em>different</em> results in most cases.
207      * </p>
208      * <p>
209      * The two methods {@link #addOffset(AngularCoordinates) addOffset} and
210      * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed
211      * so that round trip applications are possible. This means that both {@code
212      * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
213      * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
214      * </p>
215      * @param offset offset to subtract
216      * @return new instance, with offset subtracted
217      * @see #addOffset(AngularCoordinates)
218      */
219     @Override
220     public TimeStampedAngularCoordinates subtractOffset(final AngularCoordinates offset) {
221         return addOffset(offset.revert());
222     }
223 
224 }