1 /* Copyright 2002-2024 CS GROUP 2 * Licensed to CS GROUP (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.utils; 18 19 import org.hipparchus.analysis.differentiation.Derivative; 20 import org.hipparchus.geometry.euclidean.threed.FieldRotation; 21 import org.hipparchus.geometry.euclidean.threed.Rotation; 22 import org.hipparchus.geometry.euclidean.threed.RotationConvention; 23 import org.hipparchus.geometry.euclidean.threed.Vector3D; 24 import org.orekit.time.AbsoluteDate; 25 import org.orekit.time.TimeOffset; 26 import org.orekit.time.TimeStamped; 27 28 /** {@link TimeStamped time-stamped} version of {@link AngularCoordinates}. 29 * <p>Instances of this class are guaranteed to be immutable.</p> 30 * @author Luc Maisonobe 31 * @since 7.0 32 */ 33 public class TimeStampedAngularCoordinates extends AngularCoordinates implements TimeStamped { 34 35 /** Serializable UID. */ 36 private static final long serialVersionUID = 20140723L; 37 38 /** The date. */ 39 private final AbsoluteDate date; 40 41 /** Builds a rotation/rotation rate pair. 42 * @param date coordinates date 43 * @param rotation rotation 44 * @param rotationRate rotation rate Ω (rad/s) 45 * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²) 46 */ 47 public TimeStampedAngularCoordinates(final AbsoluteDate date, 48 final Rotation rotation, 49 final Vector3D rotationRate, 50 final Vector3D rotationAcceleration) { 51 super(rotation, rotationRate, rotationAcceleration); 52 this.date = date; 53 } 54 55 /** Build the rotation that transforms a pair of pv coordinates into another pair. 56 57 * <p><em>WARNING</em>! This method requires much more stringent assumptions on 58 * its parameters than the similar {@link Rotation#Rotation(Vector3D, Vector3D, 59 * Vector3D, Vector3D) constructor} from the {@link Rotation Rotation} class. 60 * As far as the Rotation constructor is concerned, the {@code v₂} vector from 61 * the second pair can be slightly misaligned. The Rotation constructor will 62 * compensate for this misalignment and create a rotation that ensure {@code 63 * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT 64 * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be 65 * preserved, this constructor works <em>only</em> if the two pairs are fully 66 * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code 67 * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt 68 * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p> 69 70 * @param date coordinates date 71 * @param u1 first vector of the origin pair 72 * @param u2 second vector of the origin pair 73 * @param v1 desired image of u1 by the rotation 74 * @param v2 desired image of u2 by the rotation 75 * @param tolerance relative tolerance factor used to check singularities 76 */ 77 public TimeStampedAngularCoordinates(final AbsoluteDate date, 78 final PVCoordinates u1, final PVCoordinates u2, 79 final PVCoordinates v1, final PVCoordinates v2, 80 final double tolerance) { 81 super(u1, u2, v1, v2, tolerance); 82 this.date = date; 83 } 84 85 /** Build one of the rotations that transform one pv coordinates into another one. 86 87 * <p>Except for a possible scale factor, if the instance were 88 * applied to the vector u it will produce the vector v. There is an 89 * infinite number of such rotations, this constructor choose the 90 * one with the smallest associated angle (i.e. the one whose axis 91 * is orthogonal to the (u, v) plane). If u and v are collinear, an 92 * arbitrary rotation axis is chosen.</p> 93 94 * @param date coordinates date 95 * @param u origin vector 96 * @param v desired image of u by the rotation 97 */ 98 public TimeStampedAngularCoordinates(final AbsoluteDate date, 99 final PVCoordinates u, final PVCoordinates v) { 100 super(u, v); 101 this.date = date; 102 } 103 104 /** Builds a TimeStampedAngularCoordinates from a {@link FieldRotation}<{@link Derivative}>. 105 * <p> 106 * The rotation components must have time as their only derivation parameter and 107 * have consistent derivation orders. 108 * </p> 109 * @param date coordinates date 110 * @param r rotation with time-derivatives embedded within the coordinates 111 * @param <U> type of the derivative 112 */ 113 public <U extends Derivative<U>>TimeStampedAngularCoordinates(final AbsoluteDate date, 114 final FieldRotation<U> r) { 115 super(r); 116 this.date = date; 117 } 118 119 /** {@inheritDoc} */ 120 public AbsoluteDate getDate() { 121 return date; 122 } 123 124 /** Revert a rotation/rotation rate pair. 125 * Build a pair which reverse the effect of another pair. 126 * @return a new pair whose effect is the reverse of the effect 127 * of the instance 128 */ 129 public TimeStampedAngularCoordinates revert() { 130 return new TimeStampedAngularCoordinates(date, 131 getRotation().revert(), 132 getRotation().applyInverseTo(getRotationRate().negate()), 133 getRotation().applyInverseTo(getRotationAcceleration().negate())); 134 } 135 136 /** Get a time-shifted state. 137 * <p> 138 * The state can be slightly shifted to close dates. This shift is based on 139 * a simple linear model. It is <em>not</em> intended as a replacement for 140 * proper attitude propagation but should be sufficient for either small 141 * time shifts or coarse accuracy. 142 * </p> 143 * @param dt time shift in seconds 144 * @return a new state, shifted with respect to the instance (which is immutable) 145 */ 146 public TimeStampedAngularCoordinates shiftedBy(final double dt) { 147 final AngularCoordinates sac = super.shiftedBy(dt); 148 return new TimeStampedAngularCoordinates(date.shiftedBy(dt), 149 sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration()); 150 151 } 152 153 /** Get a time-shifted state. 154 * <p> 155 * The state can be slightly shifted to close dates. This shift is based on 156 * a simple linear model. It is <em>not</em> intended as a replacement for 157 * proper attitude propagation but should be sufficient for either small 158 * time shifts or coarse accuracy. 159 * </p> 160 * @param dt time shift in seconds 161 * @return a new state, shifted with respect to the instance (which is immutable) 162 * @since 13.0 163 */ 164 public TimeStampedAngularCoordinates shiftedBy(final TimeOffset dt) { 165 final AngularCoordinates sac = super.shiftedBy(dt); 166 return new TimeStampedAngularCoordinates(date.shiftedBy(dt), 167 sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration()); 168 169 } 170 171 /** Add an offset from the instance. 172 * <p> 173 * We consider here that the offset rotation is applied first and the 174 * instance is applied afterward. Note that angular coordinates do <em>not</em> 175 * commute under this operation, i.e. {@code a.addOffset(b)} and {@code 176 * b.addOffset(a)} lead to <em>different</em> results in most cases. 177 * </p> 178 * <p> 179 * The two methods {@link #addOffset(AngularCoordinates) addOffset} and 180 * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed 181 * so that round trip applications are possible. This means that both {@code 182 * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code 183 * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1. 184 * </p> 185 * @param offset offset to subtract 186 * @return new instance, with offset subtracted 187 * @see #subtractOffset(AngularCoordinates) 188 */ 189 @Override 190 public TimeStampedAngularCoordinates addOffset(final AngularCoordinates offset) { 191 final Vector3D rOmega = getRotation().applyTo(offset.getRotationRate()); 192 final Vector3D rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration()); 193 return new TimeStampedAngularCoordinates(date, 194 getRotation().compose(offset.getRotation(), RotationConvention.VECTOR_OPERATOR), 195 getRotationRate().add(rOmega), 196 new Vector3D( 1.0, getRotationAcceleration(), 197 1.0, rOmegaDot, 198 -1.0, Vector3D.crossProduct(getRotationRate(), rOmega))); 199 } 200 201 /** Subtract an offset from the instance. 202 * <p> 203 * We consider here that the offset rotation is applied first and the 204 * instance is applied afterward. Note that angular coordinates do <em>not</em> 205 * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code 206 * b.subtractOffset(a)} lead to <em>different</em> results in most cases. 207 * </p> 208 * <p> 209 * The two methods {@link #addOffset(AngularCoordinates) addOffset} and 210 * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed 211 * so that round trip applications are possible. This means that both {@code 212 * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code 213 * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1. 214 * </p> 215 * @param offset offset to subtract 216 * @return new instance, with offset subtracted 217 * @see #addOffset(AngularCoordinates) 218 */ 219 @Override 220 public TimeStampedAngularCoordinates subtractOffset(final AngularCoordinates offset) { 221 return addOffset(offset.revert()); 222 } 223 224 }