Class FieldCartesianOrbit<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.orekit.orbits.FieldOrbit<T>
-
- org.orekit.orbits.FieldCartesianOrbit<T>
-
- Type Parameters:
T
- type of the field elements
- All Implemented Interfaces:
FieldTimeShiftable<FieldOrbit<T>,T>
,FieldTimeStamped<T>
,TimeShiftable<FieldOrbit<T>>
,FieldPVCoordinatesProvider<T>
public class FieldCartesianOrbit<T extends CalculusFieldElement<T>> extends FieldOrbit<T>
This class holds Cartesian orbital parameters.The parameters used internally are the Cartesian coordinates:
- x
- y
- z
- xDot
- yDot
- zDot
PVCoordinates
.Note that the implementation of this class delegates all non-Cartesian related computations (
getA()
,getEquinoctialEx()
, ...) to an underlying instance of theEquinoctialOrbit
class. This implies that using this class only for analytical computations which are always based on non-Cartesian parameters is perfectly possible but somewhat sub-optimal.The instance
CartesianOrbit
is guaranteed to be immutable.- Since:
- 9.0
- Author:
- Luc Maisonobe, Guylaine Prat, Fabien Maussion, Véronique Pommier-Maurussane, Andrew Goetz
- See Also:
Orbit
,KeplerianOrbit
,CircularOrbit
,EquinoctialOrbit
-
-
Constructor Summary
Constructors Constructor Description FieldCartesianOrbit(Field<T> field, CartesianOrbit op)
Constructor from Field and CartesianOrbit.FieldCartesianOrbit(Field<T> field, Orbit op)
Constructor from Field and Orbit.FieldCartesianOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.FieldCartesianOrbit(FieldPVCoordinates<T> pvaCoordinates, Frame frame, FieldAbsoluteDate<T> date, T mu)
Constructor from Cartesian parameters.FieldCartesianOrbit(TimeStampedFieldPVCoordinates<T> pvaCoordinates, Frame frame, T mu)
Constructor from Cartesian parameters.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
addKeplerContribution(PositionAngleType type, T gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesprotected T[][]
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.protected T[][]
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.protected T[][]
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.T
getA()
Get the semi-major axis.T
getADot()
Get the semi-major axis derivative.T
getE()
Get the eccentricity.T
getEDot()
Get the eccentricity derivative.T
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.T
getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector derivative.T
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.T
getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector derivative.T
getHx()
Get the first component of the inclination vector.T
getHxDot()
Get the first component of the inclination vector derivative.T
getHy()
Get the second component of the inclination vector.T
getHyDot()
Get the second component of the inclination vector derivative.T
getI()
Get the inclination.T
getIDot()
Get the inclination derivative.T
getLE()
Get the eccentric longitude argument.T
getLEDot()
Get the eccentric longitude argument derivative.T
getLM()
Get the mean longitude argument.T
getLMDot()
Get the mean longitude argument derivative.T
getLv()
Get the true longitude argument.T
getLvDot()
Get the true longitude argument derivative.OrbitType
getType()
Get the orbit type.boolean
hasDerivatives()
Check if orbit includes derivatives.protected FieldVector3D<T>
initPosition()
Compute the position coordinates from the canonical parameters.protected TimeStampedFieldPVCoordinates<T>
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.FieldCartesianOrbit<T>
shiftedBy(double dt)
Get a time-shifted instance.FieldCartesianOrbit<T>
shiftedBy(T dt)
Get a time-shifted orbit.CartesianOrbit
toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.String
toString()
Returns a string representation of this Orbit object.-
Methods inherited from class org.orekit.orbits.FieldOrbit
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getField, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMeanAnomalyDotWrtA, getMu, getOne, getPosition, getPosition, getPosition, getPVCoordinates, getPVCoordinates, getPVCoordinates, getZero, hasNonKeplerianAcceleration, isElliptical
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.orekit.time.FieldTimeStamped
durationFrom
-
-
-
-
Constructor Detail
-
FieldCartesianOrbit
public FieldCartesianOrbit(TimeStampedFieldPVCoordinates<T> pvaCoordinates, Frame frame, T mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
pvCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(CalculusFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
pvaCoordinates
- the position, velocity and acceleration of the satellite.frame
- the frame in which thePVCoordinates
are defined (must be apseudo-inertial frame
)mu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
-
FieldCartesianOrbit
public FieldCartesianOrbit(FieldPVCoordinates<T> pvaCoordinates, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
pvCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(CalculusFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
pvaCoordinates
- the position and velocity of the satellite.frame
- the frame in which thePVCoordinates
are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
-
FieldCartesianOrbit
public FieldCartesianOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.- Parameters:
op
- orbital parameters to copy
-
FieldCartesianOrbit
public FieldCartesianOrbit(Field<T> field, CartesianOrbit op)
Constructor from Field and CartesianOrbit.Build a FieldCartesianOrbit from non-Field CartesianOrbit.
- Parameters:
field
- CalculusField to base object onop
- non-field orbit with only "constant" terms- Since:
- 12.0
-
-
Method Detail
-
getType
public OrbitType getType()
Get the orbit type.- Specified by:
getType
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- orbit type
-
getA
public T getA()
Get the semi-major axis.Note that the semi-major axis is considered negative for hyperbolic orbits.
- Specified by:
getA
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- semi-major axis (m)
-
getADot
public T getADot()
Get the semi-major axis derivative.Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is null.
- Specified by:
getADot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- semi-major axis derivative (m/s)
-
getE
public T getE()
Get the eccentricity.- Specified by:
getE
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- eccentricity
-
getEDot
public T getEDot()
Get the eccentricity derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- eccentricity derivative
-
getI
public T getI()
Get the inclination.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getI
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- inclination (rad)
-
getIDot
public T getIDot()
Get the inclination derivative.- Specified by:
getIDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- inclination derivative (rad/s)
-
getEquinoctialEx
public T getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEx
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector
-
getEquinoctialExDot
public T getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialExDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector derivative
-
getEquinoctialEy
public T getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector
-
getEquinoctialEyDot
public T getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialEyDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector derivative
-
getHx
public T getHx()
Get the first component of the inclination vector.- Specified by:
getHx
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the inclination vector
-
getHxDot
public T getHxDot()
Get the first component of the inclination vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getHxDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the inclination vector derivative
-
getHy
public T getHy()
Get the second component of the inclination vector.- Specified by:
getHy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the inclination vector
-
getHyDot
public T getHyDot()
Get the second component of the inclination vector derivative.- Specified by:
getHyDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the inclination vector derivative
-
getLv
public T getLv()
Get the true longitude argument.- Specified by:
getLv
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- v + ω + Ω true longitude argument (rad)
-
getLvDot
public T getLvDot()
Get the true longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLvDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(v + ω + Ω)/dt true longitude argument derivative (rad/s)
-
getLE
public T getLE()
Get the eccentric longitude argument.- Specified by:
getLE
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- E + ω + Ω eccentric longitude argument (rad)
-
getLEDot
public T getLEDot()
Get the eccentric longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLEDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(E + ω + Ω)/dt eccentric longitude argument derivative (rad/s)
-
getLM
public T getLM()
Get the mean longitude argument.- Specified by:
getLM
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- M + ω + Ω mean longitude argument (rad)
-
getLMDot
public T getLMDot()
Get the mean longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLMDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(M + ω + Ω)/dt mean longitude argument derivative (rad/s)
-
hasDerivatives
public boolean hasDerivatives()
Check if orbit includes derivatives.- Specified by:
hasDerivatives
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- true if orbit includes derivatives
- See Also:
FieldOrbit.getADot()
,FieldOrbit.getEquinoctialExDot()
,FieldOrbit.getEquinoctialEyDot()
,FieldOrbit.getHxDot()
,FieldOrbit.getHyDot()
,FieldOrbit.getLEDot()
,FieldOrbit.getLvDot()
,FieldOrbit.getLMDot()
,FieldOrbit.getEDot()
,FieldOrbit.getIDot()
-
initPosition
protected FieldVector3D<T> initPosition()
Compute the position coordinates from the canonical parameters.- Specified by:
initPosition
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- computed position coordinates
-
initPVCoordinates
protected TimeStampedFieldPVCoordinates<T> initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.- Specified by:
initPVCoordinates
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- computed position/velocity coordinates
-
shiftedBy
public FieldCartesianOrbit<T> shiftedBy(double dt)
Get a time-shifted instance.- Parameters:
dt
- time shift in seconds- Returns:
- a new instance, shifted with respect to instance (which is not changed)
-
shiftedBy
public FieldCartesianOrbit<T> shiftedBy(T dt)
Get a time-shifted orbit.The orbit can be slightly shifted to close dates. This shift is based on a simple Keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
- Specified by:
shiftedBy
in interfaceFieldTimeShiftable<FieldOrbit<T extends CalculusFieldElement<T>>,T extends CalculusFieldElement<T>>
- Specified by:
shiftedBy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Parameters:
dt
- time shift in seconds- Returns:
- a new orbit, shifted with respect to the instance (which is immutable)
-
computeJacobianMeanWrtCartesian
protected T[][] computeJacobianMeanWrtCartesian()
Description copied from class:FieldOrbit
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianMeanWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianEccentricWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianEccentricWrtCartesian
protected T[][] computeJacobianEccentricWrtCartesian()
Description copied from class:FieldOrbit
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianEccentricWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianTrueWrtCartesian
protected T[][] computeJacobianTrueWrtCartesian()
Description copied from class:FieldOrbit
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianTrueWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianEccentricWrtCartesian()
-
addKeplerContribution
public void addKeplerContribution(PositionAngleType type, T gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesThis method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
- Specified by:
addKeplerContribution
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Parameters:
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian part must be added to the array components, as the array may already contain some non-zero elements corresponding to non-Keplerian parts)
-
toString
public String toString()
Returns a string representation of this Orbit object.
-
toOrbit
public CartesianOrbit toOrbit()
Description copied from class:FieldOrbit
Transforms the FieldOrbit instance into an Orbit instance.- Specified by:
toOrbit
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- Orbit instance with same properties
-
-