public class AdjustmentContext extends Object
Constructor | Description |
---|---|
AdjustmentContext(Collection<Rugged> viewingModel,
Observables measurements) |
Build a new instance.
|
Modifier and Type | Method | Description |
---|---|---|
org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer.Optimum |
estimateFreeParameters(Collection<String> ruggedNameList,
int maxEvaluations,
double parametersConvergenceThreshold) |
Estimate the free parameters in viewing model to match specified sensor
to ground mappings.
|
void |
setOptimizer(OptimizerId optimizerId) |
Setter for optimizer algorithm.
|
public AdjustmentContext(Collection<Rugged> viewingModel, Observables measurements)
viewingModel
- viewing modelmeasurements
- control and tie pointspublic void setOptimizer(OptimizerId optimizerId)
optimizerId
- the chosen algorithmpublic org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer.Optimum estimateFreeParameters(Collection<String> ruggedNameList, int maxEvaluations, double parametersConvergenceThreshold)
This method is typically used for calibration of on-board sensor parameters, like rotation angles polynomial coefficients.
Before using this method, the viewing model
parameters
retrieved by calling the
getParametersDrivers()
method
on the desired sensors must be configured. The parameters that should be
estimated must have their selection status
set to true
whereas the parameters that should
retain their current value must have their
selection status
set to
false
. If needed, the value
of the estimated/selected parameters can also be changed before
calling the method, as this value will serve as the initial value in the
estimation process.
The method solves a least-squares problem to minimize the residuals between test locations and the reference mappings by adjusting the selected viewing models parameters.
The estimated parameters can be retrieved after the method completes by
calling again the getParametersDrivers()
method on the desired sensors and checking the
updated values of the parameters. In fact, as the values of the
parameters are already updated by this method, if users want to use the
updated values immediately to perform new direct/inverse locations, they
can do so without looking at the parameters: the viewing models are
already aware of the updated parameters.
ruggedNameList
- list of rugged to refinemaxEvaluations
- maximum number of evaluationsparametersConvergenceThreshold
- convergence threshold on normalized
parameters (dimensionless, related to parameters scales)Copyright © 2014-2019 CS Systèmes d'information. All rights reserved.