Class FieldEquinoctialOrbit<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.orekit.orbits.FieldOrbit<T>
-
- org.orekit.orbits.FieldEquinoctialOrbit<T>
-
- Type Parameters:
T
- type of the field elements
- All Implemented Interfaces:
PositionAngleBased
,FieldTimeShiftable<FieldOrbit<T>,T>
,FieldTimeStamped<T>
,TimeShiftable<FieldOrbit<T>>
,FieldPVCoordinatesProvider<T>
public class FieldEquinoctialOrbit<T extends CalculusFieldElement<T>> extends FieldOrbit<T> implements PositionAngleBased
This class handles equinoctial orbital parameters, which can support both circular and equatorial orbits.The parameters used internally are the equinoctial elements which can be related to Keplerian elements as follows:
a ex = e cos(ω + Ω) ey = e sin(ω + Ω) hx = tan(i/2) cos(Ω) hy = tan(i/2) sin(Ω) lv = v + ω + Ω
where ω stands for the Perigee Argument and Ω stands for the Right Ascension of the Ascending Node.The conversion equations from and to Keplerian elements given above hold only when both sides are unambiguously defined, i.e. when orbit is neither equatorial nor circular. When orbit is either equatorial or circular, the equinoctial parameters are still unambiguously defined whereas some Keplerian elements (more precisely ω and Ω) become ambiguous. For this reason, equinoctial parameters are the recommended way to represent orbits. Note however than the present implementation does not handle non-elliptical cases.
The instance
EquinoctialOrbit
is guaranteed to be immutable.- Since:
- 9.0
- Author:
- Mathieu Roméro, Luc Maisonobe, Guylaine Prat, Fabien Maussion, Véronique Pommier-Maurussane
- See Also:
Orbit
,KeplerianOrbit
,CircularOrbit
,CartesianOrbit
-
-
Field Summary
-
Fields inherited from class org.orekit.orbits.FieldOrbit
TOLERANCE_POSITION_ANGLE_RATE
-
-
Constructor Summary
Constructors Constructor Description FieldEquinoctialOrbit(Field<T> field, EquinoctialOrbit op)
Constructor from Field and EquinoctialOrbit.FieldEquinoctialOrbit(Field<T> field, Orbit op)
Constructor from Field and Orbit.FieldEquinoctialOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.FieldEquinoctialOrbit(FieldPVCoordinates<T> pvCoordinates, Frame frame, FieldAbsoluteDate<T> date, T mu)
Constructor from Cartesian parameters.FieldEquinoctialOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, T mu)
Constructor from Cartesian parameters.FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu)
Creates a new instance.FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, PositionAngleType type, PositionAngleType cachedPositionAngleType, Frame frame, FieldAbsoluteDate<T> date, T mu)
Creates a new instance.FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, T aDot, T exDot, T eyDot, T hxDot, T hyDot, T lDot, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu)
Creates a new instance.FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, T aDot, T exDot, T eyDot, T hxDot, T hyDot, T lDot, PositionAngleType type, PositionAngleType cachedPositionAngleType, Frame frame, FieldAbsoluteDate<T> date, T mu)
Creates a new instance.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
addKeplerContribution(PositionAngleType type, T gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesprotected T[][]
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.protected T[][]
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.protected T[][]
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.T
getA()
Get the semi-major axis.T
getADot()
Get the semi-major axis derivative.PositionAngleType
getCachedPositionAngleType()
Get the cachedPositionAngleType
.T
getE()
Get the eccentricity.T
getEDot()
Get the eccentricity derivative.T
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.T
getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector derivative.T
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.T
getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector derivative.T
getHx()
Get the first component of the inclination vector.T
getHxDot()
Get the first component of the inclination vector derivative.T
getHy()
Get the second component of the inclination vector.T
getHyDot()
Get the second component of the inclination vector derivative.T
getI()
Get the inclination.T
getIDot()
Get the inclination derivative.T
getL(PositionAngleType type)
Get the longitude argument.T
getLDot(PositionAngleType type)
Get the longitude argument derivative.T
getLE()
Get the eccentric longitude argument.T
getLEDot()
Get the eccentric longitude argument derivative.T
getLM()
Get the mean longitude argument.T
getLMDot()
Get the mean longitude argument derivative.T
getLv()
Get the true longitude argument.T
getLvDot()
Get the true longitude argument derivative.OrbitType
getType()
Get the orbit type.boolean
hasNonKeplerianAcceleration()
Check if orbit includes non-Keplerian rates.boolean
hasNonKeplerianRates()
Tells whether the instance holds rates (first-order time derivatives) for dependent variables that are incompatible with Keplerian motion.protected FieldVector3D<T>
initPosition()
Compute the position coordinates from the canonical parameters.protected TimeStampedFieldPVCoordinates<T>
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.FieldEquinoctialOrbit<T>
shiftedBy(double dt)
Get a time-shifted instance.FieldEquinoctialOrbit<T>
shiftedBy(T dt)
Get a time-shifted orbit.EquinoctialOrbit
toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.String
toString()
Returns a string representation of this equinoctial parameters object.FieldEquinoctialOrbit<T>
withFrame(Frame inertialFrame)
Create a new object representing the same physical orbital state, but attached to a different reference frame.FieldEquinoctialOrbit<T>
withKeplerianRates()
Create a new instance such thatPositionAngleBased.hasNonKeplerianRates()
is false.-
Methods inherited from class org.orekit.orbits.FieldOrbit
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getField, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMeanAnomalyDotWrtA, getMu, getOne, getPosition, getPosition, getPosition, getPVCoordinates, getPVCoordinates, getPVCoordinates, getZero, hasNonKeplerianAcceleration, isElliptical
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.orekit.time.FieldTimeStamped
durationFrom
-
Methods inherited from interface org.orekit.time.TimeShiftable
shiftedBy
-
-
-
-
Constructor Detail
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, PositionAngleType type, PositionAngleType cachedPositionAngleType, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m)ex
- e cos(ω + Ω), first component of eccentricity vectorey
- e sin(ω + Ω), second component of eccentricity vectorhx
- tan(i/2) cos(Ω), first component of inclination vectorhy
- tan(i/2) sin(Ω), second component of inclination vectorl
- (M or E or v) + ω + Ω, mean, eccentric or true longitude argument (rad)type
- type of longitude argumentcachedPositionAngleType
- type of cached longitude argumentframe
- the frame in which the parameters are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
- Since:
- 12.1
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m)ex
- e cos(ω + Ω), first component of eccentricity vectorey
- e sin(ω + Ω), second component of eccentricity vectorhx
- tan(i/2) cos(Ω), first component of inclination vectorhy
- tan(i/2) sin(Ω), second component of inclination vectorl
- (M or E or v) + ω + Ω, mean, eccentric or true longitude argument (rad)type
- type of longitude argumentframe
- the frame in which the parameters are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, T aDot, T exDot, T eyDot, T hxDot, T hyDot, T lDot, PositionAngleType type, PositionAngleType cachedPositionAngleType, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m)ex
- e cos(ω + Ω), first component of eccentricity vectorey
- e sin(ω + Ω), second component of eccentricity vectorhx
- tan(i/2) cos(Ω), first component of inclination vectorhy
- tan(i/2) sin(Ω), second component of inclination vectorl
- (M or E or v) + ω + Ω, mean, eccentric or true longitude argument (rad)aDot
- semi-major axis derivative (m/s)exDot
- d(e cos(ω + Ω))/dt, first component of eccentricity vector derivativeeyDot
- d(e sin(ω + Ω))/dt, second component of eccentricity vector derivativehxDot
- d(tan(i/2) cos(Ω))/dt, first component of inclination vector derivativehyDot
- d(tan(i/2) sin(Ω))/dt, second component of inclination vector derivativelDot
- d(M or E or v) + ω + Ω)/dr, mean, eccentric or true longitude argument derivative (rad/s)type
- type of longitude argumentcachedPositionAngleType
- of cached longitude argumentframe
- the frame in which the parameters are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
- Since:
- 12.1
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(T a, T ex, T ey, T hx, T hy, T l, T aDot, T exDot, T eyDot, T hxDot, T hyDot, T lDot, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m)ex
- e cos(ω + Ω), first component of eccentricity vectorey
- e sin(ω + Ω), second component of eccentricity vectorhx
- tan(i/2) cos(Ω), first component of inclination vectorhy
- tan(i/2) sin(Ω), second component of inclination vectorl
- (M or E or v) + ω + Ω, mean, eccentric or true longitude argument (rad)aDot
- semi-major axis derivative (m/s)exDot
- d(e cos(ω + Ω))/dt, first component of eccentricity vector derivativeeyDot
- d(e sin(ω + Ω))/dt, second component of eccentricity vector derivativehxDot
- d(tan(i/2) cos(Ω))/dt, first component of inclination vector derivativehyDot
- d(tan(i/2) sin(Ω))/dt, second component of inclination vector derivativelDot
- d(M or E or v) + ω + Ω)/dr, mean, eccentric or true longitude argument derivative (rad/s)type
- type of longitude argumentframe
- the frame in which the parameters are defined (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
- Since:
- 12.1
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, T mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
pvCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(CalculusFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
pvCoordinates
- the position, velocity and accelerationframe
- the frame in which are defined theFieldPVCoordinates
(must be apseudo-inertial frame
)mu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(FieldPVCoordinates<T> pvCoordinates, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
pvCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(CalculusFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
pvCoordinates
- the position end velocityframe
- the frame in which are defined theFieldPVCoordinates
(must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.- Parameters:
op
- orbital parameters to copy
-
FieldEquinoctialOrbit
public FieldEquinoctialOrbit(Field<T> field, EquinoctialOrbit op)
Constructor from Field and EquinoctialOrbit.Build a FieldEquinoctialOrbit from non-Field EquinoctialOrbit.
- Parameters:
field
- CalculusField to base object onop
- non-field orbit with only "constant" terms- Since:
- 12.0
-
-
Method Detail
-
getType
public OrbitType getType()
Get the orbit type.- Specified by:
getType
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- orbit type
-
getA
public T getA()
Get the semi-major axis.Note that the semi-major axis is considered negative for hyperbolic orbits.
- Specified by:
getA
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- semi-major axis (m)
-
getADot
public T getADot()
Get the semi-major axis derivative.Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is null.
- Specified by:
getADot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- semi-major axis derivative (m/s)
-
getEquinoctialEx
public T getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEx
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector
-
getEquinoctialExDot
public T getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialExDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector derivative
-
getEquinoctialEy
public T getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector
-
getEquinoctialEyDot
public T getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialEyDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector derivative
-
getHx
public T getHx()
Get the first component of the inclination vector.- Specified by:
getHx
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the inclination vector
-
getHxDot
public T getHxDot()
Get the first component of the inclination vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getHxDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the inclination vector derivative
-
getHy
public T getHy()
Get the second component of the inclination vector.- Specified by:
getHy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the inclination vector
-
getHyDot
public T getHyDot()
Get the second component of the inclination vector derivative.- Specified by:
getHyDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the inclination vector derivative
-
getLv
public T getLv()
Get the true longitude argument.- Specified by:
getLv
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- v + ω + Ω true longitude argument (rad)
-
getLvDot
public T getLvDot()
Get the true longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLvDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(v + ω + Ω)/dt true longitude argument derivative (rad/s)
-
getLE
public T getLE()
Get the eccentric longitude argument.- Specified by:
getLE
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- E + ω + Ω eccentric longitude argument (rad)
-
getLEDot
public T getLEDot()
Get the eccentric longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLEDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(E + ω + Ω)/dt eccentric longitude argument derivative (rad/s)
-
getLM
public T getLM()
Get the mean longitude argument.- Specified by:
getLM
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- M + ω + Ω mean longitude argument (rad)
-
getLMDot
public T getLMDot()
Get the mean longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLMDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(M + ω + Ω)/dt mean longitude argument derivative (rad/s)
-
getL
public T getL(PositionAngleType type)
Get the longitude argument.- Parameters:
type
- type of the angle- Returns:
- longitude argument (rad)
-
getLDot
public T getLDot(PositionAngleType type)
Get the longitude argument derivative.- Parameters:
type
- type of the angle- Returns:
- longitude argument derivative (rad/s)
-
hasNonKeplerianAcceleration
public boolean hasNonKeplerianAcceleration()
Check if orbit includes non-Keplerian rates.- Overrides:
hasNonKeplerianAcceleration
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- true if orbit includes non-Keplerian derivatives
- See Also:
FieldOrbit.getADot()
,FieldOrbit.getEquinoctialExDot()
,FieldOrbit.getEquinoctialEyDot()
,FieldOrbit.getHxDot()
,FieldOrbit.getHyDot()
,FieldOrbit.getLEDot()
,FieldOrbit.getLvDot()
,FieldOrbit.getLMDot()
,FieldOrbit.getEDot()
,FieldOrbit.getIDot()
-
getE
public T getE()
Get the eccentricity.- Specified by:
getE
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- eccentricity
-
getEDot
public T getEDot()
Get the eccentricity derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- eccentricity derivative
-
getI
public T getI()
Get the inclination.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getI
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- inclination (rad)
-
getIDot
public T getIDot()
Get the inclination derivative.- Specified by:
getIDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- inclination derivative (rad/s)
-
initPosition
protected FieldVector3D<T> initPosition()
Compute the position coordinates from the canonical parameters.- Specified by:
initPosition
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- computed position coordinates
-
initPVCoordinates
protected TimeStampedFieldPVCoordinates<T> initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.- Specified by:
initPVCoordinates
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- computed position/velocity coordinates
-
withFrame
public FieldEquinoctialOrbit<T> withFrame(Frame inertialFrame)
Create a new object representing the same physical orbital state, but attached to a different reference frame. If the new frame is not inertial, an exception will be thrown.- Specified by:
withFrame
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Parameters:
inertialFrame
- reference frame of output orbit- Returns:
- orbit with different frame
-
shiftedBy
public FieldEquinoctialOrbit<T> shiftedBy(double dt)
Get a time-shifted instance.- Specified by:
shiftedBy
in interfaceTimeShiftable<T extends CalculusFieldElement<T>>
- Parameters:
dt
- time shift in seconds- Returns:
- a new instance, shifted with respect to instance (which is not changed)
-
shiftedBy
public FieldEquinoctialOrbit<T> shiftedBy(T dt)
Get a time-shifted orbit.The orbit can be slightly shifted to close dates. This shift is based on a simple Keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
- Specified by:
shiftedBy
in interfaceFieldTimeShiftable<FieldOrbit<T extends CalculusFieldElement<T>>,T extends CalculusFieldElement<T>>
- Specified by:
shiftedBy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Parameters:
dt
- time shift in seconds- Returns:
- a new orbit, shifted with respect to the instance (which is immutable)
-
computeJacobianMeanWrtCartesian
protected T[][] computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianMeanWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianEccentricWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianEccentricWrtCartesian
protected T[][] computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianEccentricWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianTrueWrtCartesian
protected T[][] computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianTrueWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianEccentricWrtCartesian()
-
addKeplerContribution
public void addKeplerContribution(PositionAngleType type, T gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesThis method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
- Specified by:
addKeplerContribution
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Parameters:
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian part must be added to the array components, as the array may already contain some non-zero elements corresponding to non-Keplerian parts)
-
toString
public String toString()
Returns a string representation of this equinoctial parameters object.
-
getCachedPositionAngleType
public PositionAngleType getCachedPositionAngleType()
Get the cachedPositionAngleType
.- Specified by:
getCachedPositionAngleType
in interfacePositionAngleBased
- Returns:
- cached type of position angle
-
hasNonKeplerianRates
public boolean hasNonKeplerianRates()
Tells whether the instance holds rates (first-order time derivatives) for dependent variables that are incompatible with Keplerian motion.- Specified by:
hasNonKeplerianRates
in interfacePositionAngleBased
- Returns:
- true if and only if holding non-Keplerian rates
-
withKeplerianRates
public FieldEquinoctialOrbit<T> withKeplerianRates()
Create a new instance such thatPositionAngleBased.hasNonKeplerianRates()
is false.- Specified by:
withKeplerianRates
in interfacePositionAngleBased
- Returns:
- new object without rates
-
toOrbit
public EquinoctialOrbit toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.- Specified by:
toOrbit
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- Orbit instance with same properties
-
-